Patterns of vegetation along contrasting elevation gradients in Oaxaca and Veracruz, Mexico

Silvia H. Salas-Morales, Guadalupe Williams-Linera


Elevation gradients have been widely documented, but few studies have compared patterns of variation between contrasting transects. Our objective was to compare vegetation structure and tree species composition of forest communities on 2 extended gradients located along the Pacific coast (Oaxaca, 0-3,600 m), and the Gulf of Mexico coast (Veracruz, 70-4,000 m), Mexico. We established 21 one-ha plots on each gradient. A total of 4,229 trees were measured and identified. Results showed that with increased elevation, basal area decreased unimodally in Oaxaca, and increased monotonically in Veracruz, whereas taxa richness decreased non-linearly in both gradients. Oaxaca was warmer and drier than Veracruz, however, richness was higher in Oaxaca (260 species) than in Veracruz (210 species). A multinomial classification model identified 58 species as Oaxaca specialist and 41 as Veracruz specialists, but only 12 species were generalist in both gradients. Canonical correspondence analyses for species, genus, and family consistently separated dry forests related to temperature and potential evapotranspiration from high elevation conifer forests. Mid-elevation montane forest differed between gradients. We conclude that climate is differentially important in vegetation structure and taxa distribution, but geographical location and disturbance history should be discussed for each gradient.

Palabras clave

Disturbance history; Multinomial classification model; Oaxaca; Precipitation; Species richness; Temperature; Vegetation structure; Veracruz

Texto completo:



Aiba, S., & Kitayama, K. (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecology, 140, 139-157.

Arévalo, J. R., Otto. R., Escudero, C., Fernández-Lugo, S., Arteaga, M., Delgado, J. D., & Fernández-Palacios, J. M. (2010) Do anthropogenic corridors homogenize plant communities at a local scale? A case studied in Tenerife (Canary Islands). Plant Ecology, 209, 23-35.

Burnham, K. P., & Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag.

Challenger, A., & Soberón, J. (2008) Los ecosistemas terrestres. In Capital Natural de México, vol. I: Conocimiento Actual de la Biodiversidad (pp. 87-108). México: CONABIO.

Chao, A., & Lin, S.-Y. (2011) Program CLAM (Classification Method). Program and User’s Guide. Retrieved on August 18, 2015 from

Chazdon, R. L., Chao, A., Colwell, R. K., Lin, S.-Y., Norden, N., Letcher, S. G., Clark, D. B., Finegan, B., & Arroyo, J. P. (2011). A novel statistical method for classifying habitat generalists and specialists. Ecology, 92, 1332-1343.

Clark, D. B., Hurtado, J., & Saatchi, S. S. (2015). Tropical rain forest structure, tree growth and dynamics along a 2700-m elevational transect in Costa Rica. PLoS ONE 10: e0122905.

Colwell, R. K., & Lees, D. C. (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution, 15, 70-76.

Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C., & Longino, J. T. (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322, 258-261.

Da, L. J., Kang, M. M., Song, K., Shang, K.-K., Yang, Y.-Ch., Xia, A.-M., & Qi, Y.-F. (2009). Altitudinal zonation of human-disturbed vegetation on Mt. Tianmu, eastern China. Ecological Research, 24, 1287-1299.

Dossa, G. G. O., Paudel, E., Fujinuma, J., Yu, H., Chutipong, W., Zhang, Y., Paz, S., & Harrison, R. D. (2013) Factors determining forest diversity and biomass on a tropical volcano, Mt. Rinjani, Lombok, Indonesia. PLoS ONE, 8, e67720.

Espinosa, D. O., Ocegueda, S. C., Aguilar, C., Flores, O., Llorente-Bousquets, J., & Vázquez, B. (2008) El conocimiento biogeográfico de las especies y su regionalización natural. In Capital Natural de México, vol. I: Conocimiento actual de la biodiversidad (pp. 33-65). México: CONABIO.

Feeley, K. J., Hurtado, J., Saatchi, S., Silman, M. R., & Clark, D. B. (2013) Compositional shifts in Costa Rican forests due to climate-driven species migrations. Global Change Biology, 19, 3472-3480.

Francis, A. P., & Currie, D. J. (2003) A globally consistent richness-climate relationship for angiosperms. The American Naturalist, 161, 523-536.

Gentry, A. H. (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75, 1-34.

Gentry, A. H. (1995) Diversity and floristic composition of neotropical dry forests. In S. H. Bullock, H. A. Mooney, & E. Medina (Eds.), Seasonally Dry Tropical Forests. (pp. 146-194). Cambridge University Press.

Gernandt, D. S., & Pérez-de la Rosa, J. A. (2014) Biodiversidad de Pinophyta (coníferas) en México. Revista Mexicana de Biodiversidad, Supl. 85, S126-S133.

González-Abraham, C., Ezcurra, E., Garcillán, P. P., Ortega-Rubio, A., Kolb, M., & Bezaury Creel, J. E. (2015) The human footprint in Mexico: physical geography and historical legacies. PLoS ONE, 10, e0121203.

Grubb, P. J. (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics, 8, 83-107.

Grytnes, J. A. (2003) Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography, 26, 291-300.

Grytnes, J. A., & Vetaas, O. R. (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist, 159, 294-304.

Grytnes, J. A., & Beaman, J. H. (2006) Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo. Journal of Biogeography, 33, 1838-1849.

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2013) Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. International Journal of Climatology, 34, 623-642.

Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J.-F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O’Brien, E. M., Porter, E. E., & Turner, J. R. G. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.

Holwerda, F., Bruijnzeel, L. A., Muñoz-Villers, L. E., Equihua, M., & Asbjornsen, H. (2010) Rainfall and cloud water interception in mature and secondary lower montane cloud forests of central Veracruz, Mexico. Journal of Hydrology, 384, 84-96.

Kessler, M., Kluge, J., Hemp, A., & Ohlemüller, R. (2011) A global comparative analysis of elevational species richness patterns of ferns. Global Ecology and Biogeography, 20, 868-880.

Kitayama, K., & Aiba, S. (2002). Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology, 90, 37-51.

Latham, R. E., & Ricklefs, R. E. (1993) Global patterns of tree species richness in moist forests: energy-diversity does not account for variation in species richness. Oikos, 67, 325-333.

Li, M., & Feng, J. (2015) Biogeographical interpretation of elevational patterns of genus diversity of seed plants in Nepal. PLoS ONE, 10, e0140992.

Liao, C. C., Liu, M., Su, M. H., & Wang, J. C. (2014) Compression and overlap of unique vegetation system of subtropical mountain resembling tropical and temperate forests along elevation. Journal of Forestry Research, 19, 215-225.

Lomolino, M. V. (2001) Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography, 10, 3-13.

Nogués-Bravo, D., Araújo, M. B., Romdal T., & Rahbek, C. (2008) Scale effects and human impact on the elevational species richness gradients. Nature, 453, 216-220.

Piperno, D. R. (2006) Quaternary environmental history and agricultural impact on vegetation in Central America. Annals of the Missouri Botanical Garden, 93, 274-296.

R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved on November 13, 2017 from

Rahbek, C. (1995) The elevation gradient of species richness: a uniform pattern? Ecography, 18, 200-205.

Rahbek, C. (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224-239.

Rowe, R. J. (2009) Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography, 32, 411-422.

Salas-Morales, S. H., & Meave, J. A. (2012) Elevational patterns in the vascular flora of a highly diverse region in southern Mexico. Plant Ecology, 213, 1209-1220.

Salas-Morales, S. H., Meave, J. A., & Trejo, I. (2015) The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico. International Journal of Biometeorology, 59, 1861-1874.

Sanders, N. J. (2002) Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography, 25, 25-32.

Sanders, N. J., & Rahbek, C. (2012) The patterns and causes of elevational diversity gradients. Ecography, 35, 1-3.

Sang, W. (2009) Plant diversity patterns and their relationship with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecological Research, 24, 303-314.

ter Braak, C. J. F., & Šmilauer, P. (2002) CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, New York.

Toledo-Garibaldi, M., & Williams-Linera, G. (2014) Tree diversity patterns in successive vegetation types along an elevation gradient in the mountains of eastern Mexico. Ecological Research, 29, 1097-1104.

Valencia, S. (2004) Diversidad del género Quercus (Fagaceae) en México. Boletín de la Sociedad Botánica de México, 75, 33-53.

Wang, X., Fang, J., Sanders, N. J., White, P. S. & Tang, Z. (2009) Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography, 32, 133-142.


Enlaces refback

  • No hay ningún enlace refback.

     Ed. en Jefe: Fernando Álvarez Noguera
     Tel: (55)5622-9164
     ISSN-versión electrónica: 2007-8706
     FACTOR DE IMPACTO 2019 (publicado en 2020): 0.585
     FI a 5 años: 0.971
     CiteScore (Scopus, 2020): 1.4
     Licencia Creative Commons 
Revista Mexicana de Biodiversidad por IB-UNAM se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.


Revista Mexicana de Biodiversidad, Año 3, No. 12, enero-marzo 2014, es una publicación trimestral editada por la Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, Ciudad de México, a través del Instituto de Biología, Tercer Circuito Universitario s/n, Ciudad Universitaria, Col. Copilco, Del. Coyoacán, C.P. 04510, Ciudad de México, Tel. (55)56229164,, responsable: Dr. Fernando Álvarez Noguera. Reserva de Derechos al uso Exclusivo No. 04-2013-092709142100-203, ISSN: 2007-8706, ambos otorgados por el Instituto Nacional del Derecho de Autor, Responsable de la última actualización de este número, Instituto de Biología, UNAM, Dr. Fernando Álvarez Noguera, Tercer Circuito Universitario s/n, Ciudad Universitaria, Col. Copilco, Del. Coyoacán, C.P. 04510, Ciudad de México, fecha de la última modificación: 25 de agosto de 2016.

Las opiniones expresadas por los autores, no necesariamente reflejan la postura del editor de la publicación. Se autoriza la reproducción total o parcial de los textos aquí publicados siempre y cuando se cite la fuente completa y la dirección electrónica de la publicación.