Ecological niche models as a tool for estimating the distribution of plant communities

Autores/as

DOI:

https://doi.org/10.22201/ib.20078706e.2019.90.2829

Palabras clave:

Seasonally dry tropical forest, Endemic species, Maxent, Michoacán, Mexico

Resumen

Ecological niche models allow inferences about the distribution of species and communities, facilitating the identification of priority areas for conservation, mainly in threatened environments such as the seasonally dry tropical forest (SDTF). The objectives of this work were to delimit SDTF using mostly restricted and endemic vascular plant species, in addition to evaluating and comparing the performance of the model with 4 additional proposals of the distribution of SDTF in Michoacán. To delimit the distribution of SDTF in Michoacán, 76 individual ecological niche models were constructed. Then, the individual models were assembled to obtain the biome distribution model, and the resulting map was compared with the other SDTF proposals for Michoacán. The model best supported by the observed data and balanced in the percentage of omission and commission errors was our model, and the model most like ours in terms of the predicted area, was the one proposed by INEGI (2003). The use of widely distributed species in the definition of communities results in models with greater overestimation. It is important to adapt the available information and knowledge about the object of study, to properly integrate them into the different algorithms that allow us to obtain an approximation of what happens with the species or communities.

Biografía del autor/a

Mayra Flores-Tolentino, INSTITUTO DE BIOLOGÍA, UNIVERSIDAD AUTÓNOMA DE MÉXICO

Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México

Enrique Ortiz

Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-233, 04510 Ciudad de México, Mexico

José Luis Villaseñor

Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-233, 04510 Ciudad de México, Mexico

Citas

Aitken, M., Roberts, D. W. & Shultz, L. M. (2007). Modelling distributions of rare plants in the great basin, Western North America. Western North American Naturalist, 67, 26–38.

Anderson, R. P., Lew, D. & Peterson, A. T. (2003). Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling, 162, 211–232.

Araújo, M. B. & Guisan, A. (2006). Five (or so) challenges for species distribution modelling. Journal of Biogeography, 33(10), 1677–1688.

Baldwin, R. A. (2009). Use of maximum entropy modeling in Wildlife Research. Entropy, 11, 854–866.

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J. & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819.

Bojorquez-Tapia, L., Azura, I., Ezcurra, E. & Flores-Villela, O. (1995). Identifying conservation priorities in Mexico through geographic information systems and modeling. Ecological applications, 5, 215–231.

Castillo, M., Michán, L., & Martínez, A. L. (2014). La biocuración en biodiversidad: proceso, aciertos, errores, soluciones y perspectivas. Acta Botánica Mexicana, 108, 81–103.

Challenger, A. & Soberón, J. (2008). Los ecosistemas terrestres. In J. Sarukhán (Ed.). Capital natural de México. Vol. I. Conocimiento actual de la biodiversidad (pp. 87–108). México City: Conabio.

Chapman, A. D. (2005). Principles and methods of data cleaning. Report for the Global Biodiversity Informa-tion Facility 2004. Copenhagen: GBIF.

Clark, J. S., Gelfand, A. E., Woodall, C. W., & Zhu, K. (2014). More than the sum of the parts: forest climate response from joint species distribution models. Ecological Applications, 24(5), 990–999.

Cruz-Cárdenas, G., López-Mata, L., Villaseñor, J. L. & Ortiz, E. (2014a). Potential species distribution modeling and the use of principal component analysis as predictor variables. Revista Mexicana de Biodiversidad, 85, 189–199.

Cruz-Cárdenas, G., López-Mata, L., Ortiz-Solorio, C. A., Villaseñor, J. L., Ortiz, E., Silva, J. T., & Estrada-Godoy, F. (2014b). Interpolation of Mexican soil properties at a scale of 1: 1,000,000. Geoderma, 213, 29–35.

Cué Bär, E., Villaseñor, J. L., Arredondo, L., Cornejo, G. & Ibarra-Manríquez, G. (2006a). La flora arbórea de Michoacán, México. Boletín de la Sociedad Botánica de México, 78, 47–48.

Cué-Bär, E. M., Villaseñor, J. L., Morrone, J. J. & Ibarra-Manríquez, G. (2006b). Identifying priority areas for conservation in Mexican tropical deciduous forest based on tree species. Interciencia, 31, 712–719.

D'Amen, M., Dubuis, A., Fernandes, R. F., Pottier, J., Pellissier, L., & Guisan, A. (2015). Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models. Journal of biogeography, 42(7), 1255–1266.

D'amen, M., Rahbek, C., Zimmermann, N. E., & Guisan, A. (2017). Spatial predictions at the community level: from current approaches to future frameworks. Biological Reviews, 92(1), 169–187.

Dormann, C. F., McPherson, J. M., Araujo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, W.,Kissling, W. D., Kuehn, I., Ohlemueller, R., Peres-Neto, P. R., Reineking, B., Schroeder, B., Schurr, F. M. & Wilson, R. (2007). Methods to account for spatial autocorrelationin the analysis of species distributional data: a review. Ecography, 30(5), 609–628.

DRYFLOR, Banda, K., Delgado-Salinas, A., Dexter, K. G., Linares-Palomino, R., Oliveira-Filho, A., Prado, D., Pullan, M., Quintana, C., Riina, R., Rodríguez, G. M., et al. (2016). Plant diversity patterns in neotropical dry forests and their conservation implications. Science, 353, 1383–1387.

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans R. J., Huettman, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S. & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

Elith, J. & Leathwick, J. (2007). Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Diversity and Distributions, 13, 265–275.

Elith, J., Phillips, S., Hastie, T., Dudik, M., Chee, Y. & Yates, C. A. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distribution, 17, 43–57.

E S R I (Environmental Systems Research Institute). (2010). ArcGIS 10.0. Redlands, California.

Ferrier, S. (2002). Mapping spatial pattern in biodiversity for regional conservation planning: where to from here?. Systematic Biology, 51, 331–363.

Ferrier, S. & Guisan, A. (2006). Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43, 393–404.

Fielding, A. H. & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.

Franklin, J. (1995). Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 19, 474–499.

Gopar-Merino, L. F. & Velázquez, A. (2016). Componentes del paisaje como predictores de cubiertas de vegetación: estudio de caso del estado de Michoacán, México. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM, 90, 75–88.

Guisan, A. & Theurillat, J.-P. (2000). Equilibrium modeling of alpine plant distribution: how far can we go?. Phytocoenologia, 30, 353–384.

Guisan, A. & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.

Guisan, A. & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009.

Gurevitch, J., Scheiner, S. M. & Fox, G. A. (2002). The ecology of plants. Sunderland. Massachusetts: Sinauer.

Henderson, E. B., Ohmann, J. L., Gregory, M. J., Roberts, H. M., & Zald, H. (2014). Species distribution modelling for plant communities: stacked single species or multivariate modelling approaches?. Applied vegetation science, 17(3), 516–527.

Hernandez, P. A., Graham, C. H., Master, L. L. & Albert D. L. 2006. The effect ofsample size and species characteristics on performance of different species distributionmodeling methods. Ecography, 29, 773–785.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

Hirzel, A. H. & Le Lay, G. (2008). Habitat suitability modelling and niche theory. Journal of Applied Ecology, 45, 1372–1381.

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199, 142–152.

INEGI (Instituto Nacional de Estadística y Geografía). (2003). Conjunto de Datos Vectoriales de la Carta de Vegetación Primaria, Escala 1:1,000,000 (NIVEL I y II). Retrieved on September, 2017 from: http://www.inegi.org.mx/geo/contenidos/

Jenness, J. & Wynne, J. J. (2005). Cohen’s Kappa and classification table metrics 2.0: an ArcView 3x extension for accuracy assessment of spatially explicit models: U.S. Geological Survey Open-File Report OF 2005-1363.

Jenness, J. & Wynne, J. J. (2007). Kappa Analysis (Kappa_stats.avx) extension for ArcView. 3.x. Jenness Enterprises.

Jiménez-Alfaro, B., Suárez-Seoane, S., Chytrý, M., Hennekens, S. M., Willner, W., Hájek, M., Agrillo, E., Álvarez-Martínez, J. M., Bergamini, A., Brunet, J., Casella, L., Dítě, D., Font, X., Gillet, F., Hájková, P., Jansen, F., Jandt, U., Kacki, Z., Lenoir, J., Rodwell, J. S., Schaminée, J. H. J., Sekulová, L., Šibík, J., Škvorc, Z. & Tsiripidis, I. (2018). Modelling the distribution and compositional variation of plant communities at the continental scale. Diversity and Distributions, 24, 978–990.

Jiménez-Valverde, A. & Lobo, J. M. (2007). Threshold criteria for conversion of probability of species presence to either-or presencx 10-absence. Acta Oecologica, 31, 361–369.

Johnson, J. B. & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19, 101–108.

Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schroder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J. W., Breitenmoser-Wuersten, C., Belant, J. L., Hofer, H. & Wilting, A. (2013). The importance of correctingfor sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19, 1366–1379.

Landis, J. R. & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.

Leathwick, J. R., Elith, J., Francis, M. P., Hastie, T. & Taylor, P. (2006). Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series, 321, 267–281.

Leavenworth, W. C. (1946). A preliminary study of the vegetation of the region between Cerro Tancitaro and the Rio Tepalcatepec, Michoacan, Mexico. American Midland Naturalist, 36, 137–206.

Liu, C., Newell, G. & White, M. (2016). On the selection of thresholds for predicting species occurrence with presence‐only data. Ecology and Evolution, 6(1), 337–348.

Liu, C., White, M. & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence‐only data. Journal of Biogeography, 40(4), 778–789.

Lomba, A., Pellissier, L., Randin, C., Vicente J., Moreira, F., Honrado, J. & Gusan, A. (2010). Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143, 2647–2657.

López-Mata, L., Villaseñor, J. L., Cruz-Cárdenas, G., Ortiz, E. & Ortiz-Solorio, C. (2012). Predictores ambientales de la riqueza de especies de plantas del bosque húmedo de montaña de México. Botanical Sciences, 90, 27–36.

Mas, J-F., Lemoine-Rodríguez, R., González, R., López-Sánchez, J., Piña-Garduño, A. & Herrera-Flores, E. (2017). Evaluación de las tasas de deforestación en Michoacán a escala detallada mediante un método híbrido de clasificación de imágenes SPOT. Madera y Bosques, 23 (2), 1–13.

Mateo, R. G., Felicísimo, A. M. & Muñoz, J. (2011). Modelos de distribución de especies: Una revisión sintética. Revista Chilena de Historia Natural, 84, 217–240.

Méndez-Toribio, M., Martínez-Cruz, J., Cortés-Flores, J., Rendón-Sandoval, F. J. & Ibarra-Manríquez, G. (2014). Composición, estructura y diversidad de la comunidad arbórea del bosque tropical caducifolio en Tziritzícuaro, Depresión del Balsas, Michoacán, México. Revista Mexicana de Biodiversidad, 85(4), 1117–1128.

Miranda, F. & Hernández-X., E. (1963). Los tipos de vegetación de México y su clasificación. Boletín de la Sociedad Botánica de México, 28, 29–179.

Muñoz, J. & Felicisimo, A. M. (2004). Comparison of statistical methods commonly used in predictive modeling. Journal of Vegetation Science, 15, 285–292.

Murray-Smith, C., Brummitt, N. A., Oliveira-Filho, A. T., Bachman, S., Moat, J., Lughadha, E. M. N. & Lucas, E. J. (2009). Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conservation Biology, 23, 151–163.

Olson, D. M., Dinerstein, E. Abell, R., Allnutt, T., Carpenter, C., McClenachan, L., D´Amico, J., Hurley, P., Kassem, K., Strand, H., Taye, M. & Thieme, M. (2000). The global 200: a representation approach to conserving the Earth´s distinctive ecoregions. Conservation Science Program, World Wildlife Fund-US, Washington.

Oreskes, N., Shrader-Frechette, K. & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263(5147), 641–646.

Ortega‐Huerta, M. A. & Vega‐Rivera, J. H. (2017). Validating distribution models for twelve endemic bird species of tropical dry forest in western Mexico. Ecology and Evolution, 7(19), 7672–7686.

Pearson, R. G., Dawson, T. P. & Liu, C. (2004). Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography, 27, 285–298.

Pearson, R. G., Thuiller, W., Araújo, M. B., Martinez-Meyer, E., Brotons, L., McClean, C., Miles, L., Segurado, P., Dawson, T. P., & Lees, D. C. (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 1704–1711.

Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend-Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.

Peterson, A. T. & Nakazawa, Y. (2008): Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography, 17, 135–144.

Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M. & Araújo, M. B. (2011). Ecological niches and geographical distributions. Monographs in Population Biology 49. Princeton University Press, Princeton.

Peterson, A. T. & Soberón, J. (2012). Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Natureza & Conservação, 10, 102–107.

Phillips, S. J., Anderson, R. P. & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

Phillips, S. & Dudik, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.

Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Rossier, L., Randin, C.F., Vittoz, P. & Guisan, A. (2013). The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 22, 52–63.

Prieto-Torres, D. A. & Rojas-Soto, O. R. (2016). Reconstructing the Mexican tropical dry forests via an autoecological niche approach: reconsidering the ecosystem boundaries. PLoS One, 11(3), e0150932.

Rodríguez, J. L. S. & Espinosa, G. J. (1995). Listado Florístico del Estado de Michoacán. Sección I (Gymnospermae; Angiospermae: Acanthaceax 10-Commelinaceae). Flora del Bajío y de Regiones Adyacentes. Pátzcuaro, Michoacán Instituto de Ecología, A.C., Centro Regional del Bajío. Fascículo Complementario VI.

Rodríguez, J. L. S. & Espinosa, G. J. (1996). Listado Florístico del Estado de Michoacán. Sección V (Angiospermae: Najadaceae, Zyophyllaceae). Flora del Bajío y de Regiones Adyacentes. Pátzcuaro, Michoacán Instituto de Ecología, A.C., Centro Regional del Bajío. Fascículo Complementario XV.

Rzedowski, J. (1978). Vegetación de México. Limusa, Mexico.

Rzedowski, J. (1990). Vegetación Potencial. Atlas Nacional de México. Instituto de Geografía, UNAM, Mexico.

Rzedowski, J. (1991). Diversidad y orígenes de la flora fanerogámica de México. Acta Botánica Mexicana, 14, 3–21.

Segurado, P. & Araujo, M. B. (2004). An evaluation of methodsfor modelling species distributions. Journal of Biogeography, 31, 1555–1568.

Soberón, J. M. & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics, 2, 1–10.

Soberón, J., Osorio-Olvera, L. & Townsend, P. (2017). Diferencias conceptuales entre modelación de nichos y modelación de áreas de distribución. Revista Mexicana de Biodiversidad, 88, 237–441.

Thuiller, W., Lavorel, S., Midgley, G., Levergne, S. & Rebelo, T. (2004). Relating plant traits and speciesdistributions along bioclimatic gradients for 88 Leucaden-dron species in the Cape Floristic Region. Ecology, 85, 1688–1699.

Trejo, I. & Dirzo, R. (2000). Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biological Conservation, 94, 133–142.

Trejo, I. & Dirzo, R. (2002). Floristic diversity of Mexican seasonally dry tropical forests. Biodiversity and Conservation, 11, 2063–2084.

Villaseñor, J. L. (2003). Diversidad y distribución de las Magnoliophyta de México. Interciencia, 28, 160–167.

Villaseñor, J. L. (2004). Los géneros de plantas vasculares de la flora de México. Boletín de la Sociedad Botánica de México, 75, 105–135.

Villaseñor, J. L. 2016. Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad, 87(3), 559–902.

Villaseñor, J. L. & Ortiz, E. (2014). Biodiversidad de las plantas con flores (División Magnoliophyta) en México. Revista Mexicana de Biodiversidad, 85(Supl.), S134–S142.

Weber, T. C. (2011). Maximum entropy modeling of mature hardwood forest distribution in four U.S. states Forest. Ecology and Management, 261, 779–788.

Whittaker, R. H. (1965). Dominance and diversity in land plant communities. Science, 147, 250–260.

Woodward, F. I. & Williams, B. G. (1987). Climate and plant-distribution at global and local scales. Vegetatio, 69, 189–197.

Descargas

Archivos adicionales

Publicado

2019-09-09

Número

Sección

BIOGEOGRAFÍA