Comparison of oribatid mites from agricultural soils with contrasting irrigation types in Hidalgo State, Mexico: a case study

Autores/as

  • Ricardo Iglesias Universidad Nacional Autónoma de México
  • José G. Palacios-Vargas Universidad Nacional Autónoma de México
  • Gabriela Castaño-Meneses Universidad Nacional Autónoma de México http://orcid.org/0000-0002-5405-5221

DOI:

https://doi.org/10.22201/ib.20078706e.2019.90.2780

Palabras clave:

Communities, diversity, seasonal variation, agricultural soils

Resumen

The objective of this work is to know the structure (composition and density) of the community of the oribatid mites and their relationship to edaphic parameters in 2 agricultural parcels with different type of irrigation. It constitutes the first work done with oribatid mites in agricultural plots irrigated with waste water in Mexico. Two agricultural
parcels were selected: one is irrigated with waste water (San Salvador) and the other with well water (El Bondho) from the municipality of San Salvador. The density of oribatids in San Salvador was higher than that from El Bondho (2,360 and 1,935 ind/m2, respectively). The maximum abundances in percentages in San Salvador were for 3 species:
Tectocepheus velatus elegans (48%), Scheloribates sp. (15%) and Oppiella nova (13%); but for El Bondho, there were only 2 species: Zygoribatula connexa (74%) and Ramusella sp. (10%). Due to soil conditions by the irrigation type, results gave information, on one hand, about the tolerance of some species like O. nova, R. ardua, and T. velatus elegans to heavy metals, and on the other hand, about the low resistance to heavy metals of Epilohmannia pallida and Z. connexa, which were present in the less polluted parcel, but are tolerant to saline soils. Results can be useful to support the use of some species of oribatid mites as bioindicators in ecosystems with similar conditions.

Biografía del autor/a

Ricardo Iglesias, Universidad Nacional Autónoma de México

Departamento de Ecología y Recursos Naturales, Facultad de Ciencias.

José G. Palacios-Vargas, Universidad Nacional Autónoma de México

Departamento de Ecología y Sistemática de Microartrópodos, Facultad de Ciencias

Profesor Titular C

Gabriela Castaño-Meneses, Universidad Nacional Autónoma de México

Unidad Multidisciplinaria de Docencia e Investigación, Facultad de ciencias, UNAM, Campus Juriquilla,

Profesor Titular C

Citas

Aktar, Md. W., Sengupta, D. & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 1, 1-12

Al-Assiuty, A. I. M., Khalil, M. A. & Abdel-Lateif, H. M. (2000). Effects of dry sludge application on soil microarthropod communities in a reclaimed desert ecosystem. Pedobiologia, 44, 567-578.

Aoki, J. (1979). Difference in sensitivities of oribatid families to environmental change by human impacts. Revue d’Ecologie et Biologie du Sol., 16, 415-422.

Behan-Pelletier, V. M. (1999). Oribatid mite biodiversity in agroecosystems: role for bioindication. Agriculture, Ecosystems and Environment, 74, 411-423.

Borah, M. & Kakati, L. N. (2013). Abundance and distribution of soil Acarina in natural and degraded forest ecosystems at Pathalipam, Lakhimpur, Assam. International Journal of Scientific & Engineering Research, 12, 1694- 1709.

Braatz, S. & Kandiah, A. (1996). The use of municipal waste water for forest and tree irrigation. Unasylva, 185, 45-51.

CNA, Comisión Nacional del Agua. (1995). Impacto del riego con aguas residuales en las aguas subterráneas del Valle del Mezquital, Hidalgo. Reporte Fase I. México.

CONAGUA, Comisión Nacional del Agua. (2013). Actualización de la disponibilidad de agua en el acuífero Actopan-Santiago de Anaya (1313), Estado de Hidalgo.

Corral, E. H. & Iturrondobeitia, J. C. (2012). Effects of cattle and industries on oribatid mites communities of grassland soil in the Basque Country (Spain). International Journal of Acarology, 3, 217-229.

DDR 063, Distrito de Desarrollo Rural. (1997). Características generales de los Distritos de Riego 003-Tula y 100 Alfajayucan. Mixquiahuala, Hgo.

Desmond, A. O. D. & Alex, U. O. (2013). A comparative assessment of soil arthropod abundance and diversity in practical farmlands of University of Ibadan, Nigeria. The International Journal of Environmental Resources Research, 1, 17-29.

Eeva, T & Pentinnen, R. (2009). Leg deformities of oribatid mites as an indicator of environmental pollution. Science of the Total Environment, 407, 4771-4776.

El-Sharabasy, H. M. & Hibraim, A. (2010). Communities of Oribatid Mites and Heavy Metal Accumulation in Oribatid Species in Agricultural Soils in Egypt Impacted by Waste Water. Plant Protection Science, 4, 159– 170.

Flores-Magdaleno, H., Mancilla-Villa, O. R., Mejía-Saenz, E., Olmedo-Bolaños, Ma. Del C. & Bautista-Olivas, A. L. (2011). Heavy metals in agricultural soils and irrigation wastewater of Mixquiahuala, Hidalgo, Mexico. African Journal of Agricultural Research, 24, 5505-5511.

Gan, H. (2013). Oribatid mite communities in soil: structure, function and response to global environmental change. PhD Thesis, University of Michigan.

Gulvik, M. E. (2007). Mites (Acari) as indicators of soil biodiversity and land use monitoring: a review. Polish Journal of Ecology, 3, 415-440.

Herre, A., Siebe, C., & Kaupenjohann, M. (2004). Effect of irrigation water quality on organic matter, Cd and Cu mobility in soils of central Mexico. Water Science and Technology, 2, 277-284.

Hunter, P. (2007). The human impact on biological diversity. How species adapt to urban challenges sheds light on evolution and provides clues about conservation. Embo reports, 4, 316-318.

Hubert, J. (2000). The oribatid community (Acari: Oribatida) on dry cow pasture. Ekólogia (Bratislava), 19, 354-364.

Ivan, O. & Călugăr. A. (2013). A peculiarities of the edaphic mesofauna in some cultivated soils from the Central Moldavian Plateau. Lucrări Ştiinţifice, 2, 125-130.

Lebrun, P. & van Straalen, N. M. (1995). Oribatid mites: prospects for their use in ecotoxicology. Experimental and Applied Acarology, 19, 361-380.

Ludwig, J. A. & Reynolds, J. F. (1988). Statistical ecology: a primer of methods and computing. Wiley Press, New York, New York.

Magurran, A. (1988). Ecological diversity and its measurement. Princeton University Press, New Jersey.

Maraun, M., Salamon, J. A., Schneider, K., Schaefer, M. & Scheu, S. (2003). Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): Effects of mechanical perturbations. Soil Biology and Biochemistry, 35, 1387-1394.

Maribie, C. W., Nyamasyo, G. H. N. Ndegwa, P. N., Mung’atu, J. K., Lagerlöf, J. and Gikungu, M. (2011). Abundance and diversity of soils mites (Acari) a long gradient of land use types in Taita, Taveta, Kenia. Tropical and Subtropical Agroecosystems, 13, 11-26.

Minor, M. A., Volk, T. A. & Norton, R. A. (2004). Effects of site preparation techniques on communities of soil mites (Acari: Oribatida, Acari: Gamasida) under short-rotation forestry plantings in New York, USA. Applied Soil Ecology, 25, 181-192.

Norton, R. A. (1990). Acarina. Oribatida. In: Dindal, D. L. (Ed.). Soil biology guide (pp.779-803). Wiley. Interscience Publication, New York.

Norton, R. A. & Sillman, D. Y. (1985). Impact of only waste application on the mite community of an arable soil. Experimental Applied Acarology, 1, 287-306.

Parmelee, R. W., Wentsel, R. S., Phillips, C. T., Simini, M. & Checkai, R. T. (1993). Soil microcosm for testing the effects of chemical pollutants on soil fauna communities and trophic structure. Environmental Toxicology and Chemistry, 12, 1477-1486.

Plan de Desarrollo Municipal de San Salvador, Hgo. (2012-2016). 80 pp.

Plan Municipal de Desarrollo Hidalgo, San Salvador. (2016-2020). 153 pp.

Prado, B., Siebe, C., Bischoff, W. A., Hernández-Martínez, L & Mora, L. (2015). El suelo: guardián de la calidad del agua subterránea. CONABIO. Biodiversitas, 122, 6-9

Prieto-García, F., Méndez-Marzo, M. A., Martínez-Pezina, F. H. y Prieto-Méndez, J. (2007). Presencia de metales pesados en cultivos del Valle del Mezquital, México. Revista Latinoamericana de Recursos Naturales, 2, 100-110

Romero, A. H. (1997). El Valle del Mezquital. Estudio de caso. En: Helmer, R. & I. Espanhol (Eds). Water pollution control. A guide to the use of water quality management principles (pp. 1-10). PNUMA, CCAIS, OMS, México, D. F. Ruiz, E., Mínguez, M. E. & Subías, L. S. (1986). Los oribátidos (Acari: Oribatida) de los eriales de cultivo de una zona agrícola del sur de Madrid y el efecto Borde. Actas de las VIII Jornadas A e E, 98-110.

Rusek, J. (2000). Impacts of airborne pollutants on soil fauna. Annual Review of Ecology and Systematics, 31, 395-423.

Sagasta, J., Medlicott, M. K., Qadir, M., Raschid-Sally, L., Dreschsel, P. & Liebe, J. (2013). Proceedings of the UN-Water project on the Safe Use of Wastewater in Agriculture. UN-Water Decade Programme on Capacity Development (UNW-DPC). United Nations University.

Seniczak, A., Seniczak, S & Dlugosz, J. (1997). The influence of copper on the development, fertility and mortality of Archegozetes longisetosus Aoki (Acari: Oribatida) in the laboratory conditions. Arbeitstangun Mengen-spurenelemente, 1997, 620-626.

Seniczak, A., Seniczak, S. & Dlugosz, J. (1999). The effect of lead and copper on Archegozetes longisetosus Aoki (Acari), Oribatida) in laboratory conditions. Soil Zoology in Central Europe, 289-293.

Siebe, C. (1994. Acumulación y disponibilidad de metales pesados en suelos regados con aguas residuales, en el Distrito de Riego 03, Tula, Hgo., México. Revista Internacional de Contaminación Ambiental, 10, 15-21.

Siebe, C. & Cifuentes, E. (1995). Environmental impact of Wastewater irrigation in Central México: An overview. International Journal of Environmental Health Research, 5, 161-173.

Siebe, C. & Fisher, W. R. (1996). Effect of long- term irrigation with untreated sewage effluents on soil properties and heavy metal adsorption of leptosols and vertisols in Central México. Z. Pflanzenernahr. Bodenk., 159, 357-364.

Skubala, P. (1995). Moss mites (Acarina: Oribatida) on industrial dumps of different age. Pedobiologia 39, 170-184.

Skubala, P. & Kafel, A. (2004). Oribatid mite communities and metal bioaccumulation in oribatid species (Acari, Oribatida) along the heavy metal gradient in forest ecosistems. Environmental Pollution, 132, 51-60.

Skubala, P. & Zaleski, T. (2011). Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida) Gradient study in meadow ecosystems. Science of the Total Environment 2012, 364–372.

Socarrás, A. A. y Robaina, N. (2011). Caracterización de la mesofauna edáfica bajo diferentes usos de la tierra en suelo Ferralítico Rojo de Mayabeque y Artemisa, Pastos y Forrajes, 2, 185- 198.

StatSoft Inc. (1999). Statistical user guide, Complete Statistical System Statsoft. Oklahoma, USA.

Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N. and Mukhlisin, M. A. (2011). Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering, 2011, 1-31

Vladislav, S. A., Pavel, A., Barsukov, P. A., and Bashkin, V. N. (2015). Application of Soil Oribatid Mites as Bioindicators in Impact Areas of the Gas Industry in the West Siberian Tundra. The Open Ecology Journal, Suppl 1-M4, 32-39.

Yina, M. G. J., Castillo, J. A. F. y Bacca, T. (2013). Ácaros oribátidos presentes en seis sistemas de uso del suelo en Obonuco, Pasto (Nariño). Boletín Científico Museo de Historia Natural 2, 60-68.

Zaitsev, A. S. & van Straalen, N. M., (2001). Species diversity and metal accumulation in Oribatid mites (Acari: Oribatida) of forest affected by a metallurgical plant. Pedobiologia, 45, 467-479.

Zamora, C. J. (1988). Evaluación de la calidad del agua potable del acueducto sistema Valle del Mezquital y poblaciones abastecidas en el Estado de Hidalgo, México. Tesis de Licenciatura, Facultad de Química, UNAM, México.

Zar, J. H. (1984). Biostatistical analysis. 2n. Edition. Englewood Cliffs, Nueva Jersey.

Descargas

Archivos adicionales

Publicado

2019-05-27

Número

Sección

ECOLOGÍA