Toxicidad y efectos adversos de las lactonas macrocíclicas sobre los escarabajos estercoleros: una revisión

Luis Carlos Pérez-Cogollo, Roger Iván Rodríguez-Vivas, Gertrudis del Socorro Basto-Estrella, Enrique Reyes-Novelo, Imelda Martínez-Morales, Melina Maribel Ojeda-Chi, Mario E. Favila

Resumen


Las avermectinas, milbemicinas y espinosinas forman parte de las lactonas macrocíclicas (LM), endectocidas que se obtienen por  fermentación de diferentes especies de microorganismos del suelo. Las LM son usadas ampliamente en medicina veterinaria y agricultura debido a su potente actividad contra nemátodos y artrópodos. Sin embargo, estos compuestos al ser eliminados en las heces de animales, causan efectos adversos sobre la fauna edáfica asociada al estiércol. Esta revisión tiene por objetivo documentar los efectos adversos de las avermectinas y milbemicinas sobre los invertebrados terrestres asociados al estiércol, con énfasis en los escarabajos estercoleros de ambientes ganaderos bajo sistemas de pastoreo. Se compiló información sobre la estructura química y los efectos toxicológicos en estudios de laboratorio y de campo, de los compuestos de mayor uso en rumiantes domésticos. Esta información se sintetiza en 6 tablas que incluyen el riesgo toxicológico de las avermectinas (ivermectina, abamectina, doramectina y eprinomectina) y de una milbemicina (moxidectina). La información compilada demuestra que el uso de las avermectinas representa un riesgo ecotóxico alto, en especial para los estadios inmaduros de escarabajos estercoleros. La moxidectina ha demostrado generar menos impacto ecotóxico en comparación con las avermectinas, pero la investigación sobre este compuesto es aún escasa.


Palabras clave


Efecto; Organismo no blanco; Escarabajo estercolero; Scarabaeidae; Ivermectina; Moxidectina

Texto completo:

PDF

Referencias


Adler, N., Bachmann, J., Blanckenhorn, W. U., Floate, K. D., Jensen, J. & Römbke, J. (2016). Effects of ivermectin application on the diversity and function of dung and soil fauna: Regulatory and scientific background information. Environmental Toxicology and Chemistry, 35, 1914–1923.

Alvinerie, M., Sutra, J. F., Galtier, P. & Mage, C. (1999). Pharmacokinetics of eprinomectin in plasma and milk following subcutaneous administration to Lactating dairy cattle. Research in Veterinary Science, 67, 229–232.

Barceló-Lugo, A. A. (2014). Diversidad de escarabajos estercoleros (Coleoptera: Scarabaeinae) en sistemas ganaderos con y sin uso de lactonas macrocíclicas en Yucatán, México. Universidad Autónoma de Yucatán.

Basto-estrella, G., Rodríguez-Vivas, R. I., Delfín-gonzález, H., Navarro-Alberto, J. A., Favila, M. E. & Reyes-novelo, E. (2016). Dung removal by dung beetles (Coleoptera: Scarabaeidae) and macrocyclic lactone use on cattle ranches of Yucatan, Mexico. Revista de Biología Tropical, 64, 945–954.

Basto-Estrella, G., Rodríguez-Vivas, R. I., Delfín-González, H. & Reyes-Novelo, E. (2014). Dung beetle (Coleoptera: Scarabaeinae) diversity and seasonality in response to use of macrocyclic lactones at cattle ranches in the mexican neotropics. Insect Conservation and Diversity, 7, 73–81.

Bernal, J. L., Del Nozal, M. J., Salas, M., Galante, E. & Lumaret, J. P. (1994). HPLC determination of residual ivermectin in cattle dung following subcutaneous injection. Journal of Liquid Chromatography, 17, 2429–2444.

Beynon, S., Wainwrig, W. A. & Christie, M. (2015). The application of an ecosystem services framework to estimate the economic value of dung beetles to the U.K. cattle industry. Ecological Entomology, 40, 124–135.

Blanckenhorn, W. U. W. U., Puniamoorthy, N., Scheffczyk, A. & Römbke, J. (2013). Evaluation of eco-toxicological effects of the parasiticide moxidectin in comparison to ivermectin in 11 species of dung flies. Ecotoxicology and Environmental Safety, 89, 15–20.

Chabala, J. C., Mrozik, H., Tolman, R. L., Eskola, P., Lusi, A., Peterson, L. H., Woods, M. F., Fisher, M. H., Campbell, W. C., Egerton, J. R. & Ostlind, D. (1980). Ivermectin, a new broad-spectrum antiparasitic agent. Journal of medicinal chemistry, 88, 1134.

Chirico, J., Wiktelius, S. & Waller, P. J. (2003). Dung beetle activity and the development of trichostrongylid eggs into infective larvae in cattle faeces. Veterinary Parasitology, 118, 157–163.

Cook, D., Dadour, I. & Ali, D. (1996). Effect of diet on the excretion profile of ivermectin in cattle faeces. International Journal for Parasitology, 26, 291–5.

Cruz-Rosales, M., Martínez, I., López-Collado, J., Vargas-Mendoza, M., González-Hernández, H. & Fajersson, P. (2012). Effect of ivermectin on the survival and fecundity of Euoniticellus intermedius (Coleoptera: Scarabaeidae). Revista de Biología Tropical, 60, 333–45.

Dadour, I. R., Cook, D. F. & Hennessy, D. (2000). Reproduction and survival of the dung beetle Onthophagus binodis (Coleoptera: Scarabaeidae) exposed to abamectin and doramectin residues in cattle dung. Environmental Entomology, 29, 1116–1122.

Dadour, I. R., Cook, D. F. & Neesam, C. (1999). Dispersal of dung containing ivermectin in the field by Onthophagus taurus (Coleoptera: Scarabaeidae). Bulletin of Entomological Research, 89, 119–123.

Diao, X., Jensen, J. & Hansen, A. D. (2007). Toxicity of the anthelmintic abamectin to four species of soil invertebrates. Environmental Pollution, 148, 514–519.

Doherty, W. M., Stewart, N. P., Cobb, R. M. & Keiran, P. J. (1994). In-vitro comparison of the larvicidal activity of moxidectin and abamectin against Onthophagus gazella (F.) (Coleoptera: Scarabaeidae ) and Haematobia irritans exigua De Meijere (Diptera: Muscidae). Journal Of Austral Entomology Society, 33, 71–74.

Dybas, R. A. (1989). Abamectin use in crop protection. In: Campbell, W. C. (ed.) Ivermectin and Abamectin,. New York (NY): Springer-Verlag. p 287–310, 287–310.

Errouissi, F., Alvinerie, M., Galtier, P., Kerbœuf, D. & Lumaret, J. P. (2001). The negative effects of the residues of ivermectin in cattle dung using a sustained-release bolus on Aphodius constans (Duft.) (Coleoptera: Aphodiidae). Veterinary Research, 32, 421–427.

Fincher, G. T. (1975). Effects of dung beetle activity on the number of nematode parasites acquired by grazing cattle. Journal of Parasitology, 51, 759–762.

Fincher, G. T. (1992). Injectable ivermectin for cattle: effects on some dung-inhabiting insects. Environmental Entomology, 21, 871–876.

Fincher, G. T. (1996). Ivermectin pour-on for cattle: effects on some dung-inhabiting insects. Southwestern Entomologist, 21, 445–450.

Floate, K. (1998a). Does a repellent effect contribute to reduced levels of insect activity in dung from cattle treated with ivermectin? Bulletin of Entomological Research, 88, 291–297.

Floate, K. (1998b). Off-target effects of ivermectin on insects and on dung degradation in southern Alberta, Canada. Bulletin of Entomological Research, 88, 25–35.

Floate, K. (2007). Endectocide residues affect insect attraction to dung from treated cattle: implications for toxicity tests. Medical and Veterinary entomology, 21, 312–22.

Floate, K., Wardhaugh, K., Boxall, A. B. A. & Sherratt, T. N. (2005). Fecal residues of veterinary parasiticides: nontarget effects in the pasture environment. Annual Review of Entomology, 50, 153–179.

Fort Dodge, A. H. (1997). Environmental assessment CYDECTIN moxidectin 0.5% Pour-on for cattle, Z154314. .

Gao, H., Liu, M., Zhou, X., Liu, J., Zhuo, Y., Gou, Z., Xu, B., Zhang, W., Liu, X., Luo, A., Zheng, C., Chen, X. & Zhang, L. (2010). Identification of avermectin-high-producing strains by high-throughput screening methods. Applied Microbiology and Biotechnology, 85, 1219–1225.

González-Tokman, Martínez M. I., Villalobos-Avalos, Y., Munguía-Steyer, R., Ortiz-Zayas, M. R., Cruz-Rosales, M., Lumaret, J-P. (2017). Ivermectin alters reproductive success, body condition and sexual trait expression in dung beetles. Chemosphere 178:129135

Goudie, A. C., Evans, N. A., Gration, K. A. F., Bishop, B. F., Gibson, S. P., Holdom, K. S., Kaye, B., Wicks, S. R., Lewis, D., Weatherley, A. J., Bruce, C. I., Herbert, A. & Seymour, D. J. (1993). Doramectin - a potent novel endectocide. Veterinary Parasitology, 49, 5–15.

Halffter, G. & Edmonds, W. D. (1982). The nesting behavior of dung beetles (Scarabaienae) an ecological and evolutive approach. Edited by Instituto de Ecología, A.C. México. 176 p.

Halley, B. A., Jacob, T. J. & Lu, A. Y. H. (1989). The environmental impact of the use of ivermectin: environmental effect and fate. Chemosphere, 18, 1543–1563.

Hempel, H., Scheffczyk, A., Schallnaß, H.-J., Lumaret, J. P., Alvinerie, M. & Römbke, J. (2006). Toxicity of four veterinary parasiticides on larvae of the dung beetle Aphodius constans in the laboratory. Environmental Toxicology and Chemistry, 25, 3155–3163.

Herd, R., Sams, R. A. & Ashcraft, S. M. (1996). Persistence of ivermectin in plasma and faeces following treatment of cows with ivermectin sustained-release, pour-on or injectable formulations. International journal for parasitology, 26, 1087–93.

Holter, P. (2000). Particle feeding in Aphodius dung beetles (Scarabaeidae): Old hypotheses and new experimental evidence. Functional Ecology, 14, 631–637.

Holter, P. & Scholtz, C. H. (2007). What do dung beetles eat? Ecological Entomology, 32, 690–697.

Holter, P., Sommer, C., Gronvold, J. & Madsen, M. (1993a). Effects of ivermectin treatment on the attraction of dung beetles (Coleoptera: Scarabaeidae and Hydrophilidae) to cow pats. Bulletin of Entomological Research, 83, 53–58.

Holter, P., Sommer, C. & Grønvold, J. (1993b). Attractiveness of dung from ivermectin-treated cattle to Danish and afrotropical scarabaeid dung beetles. Veterinary Parasitology, 48, 159–69.

Houlding, B., Ridsdill-smith, T. J. & Bailey, W. J. (1991). Injectable abamectin causes delay in scarabaeine dung beetle egg-laying in cattle dung. Australian Veterinary Journal, 68, 185.

Humeres, E. C. & Morse, J. G. (2005). Baseline susceptibility of persea mite (Acari: Tetranychidae) to abamectin and milbemectin in avocado groves in Southern California. Experimental and Applied Acarology, 36, 51–59.

Iglesias, L. E., Saumell, C., Fernández, A. S., Fusé, L. A., Lifschitz, A., Rodríguez, E. M., Steffan, P. E. & Fiel, C. A. (2006). Environmental impact of ivermectin excreted by cattle treated in autumn on dung fauna and degradation of faeces on pasture. Parasitology Research, 100, 93–102.

Iwasa, M., Maruo, T., Ueda, M. & Yamashita, N. (2007). Adverse effects of ivermectin on the dung beetles, Caccobius jessoensis Harold, and rare species, Copris ochus Motschulsky and Copris acutidens Motschulsky (Coleoptera: Scarabaeidae), in Japan. Bulletin of Entomological Research, 97, 619–25.

Iwasa, M., Nakamura, T., Fukaki, K. & Yamashita, N. (2005). Nontarget Effects of Ivermectin on Coprophagous Insects in Japan. Environmental Entomology, 34, 1485–1492.

Iwasa, M., Suzuki, N. & Marayuma, M. (2008). Effects of moxidectin on coprophagous insects in cattle dung pats in Japan. Applied Entomology and Zoology, 43, 271–280.

Jochmann, R., Lipkow, E. & Blanckenhorn, W. U. (2016). A field test of the effect of spiked ivermectin concentrations on the biodiversity of coprophagous dung insects in Switzerland. Environmental Toxicology and Chemistry, 35, 1947–1952.

Kolar, L., Flajs, V. C., Kuzner, J., Marc, I., Pogacnik, M., Bidovec, A., van Gestel, C. A. M. & Erzen, N. K. (2006). Time profile of abamectin and doramectin excretion and degradation in sheep faeces. Environmental Pollution, 144, 197–202.

Kolar, L., Kuzner, J. & Erzen, N. K. (2004). Determination of abamectin and doramectin in sheep faeces using HPLC with fluorescence detection. Biomedical Chromatography, 18, 117–24.

Krüger, K. & Scholtz, C. H. (1997). Lethal and sublethal effects of ivermectin on the dung-breeding beetles Euoniticellus intermedius (Reiche) and Onitis alexis Klug (Coleoptera, Scarabaeidae). Agriculture, ecosystems and Enviroment, 61, 123–131.

Kryger, U., Deschodt, C. & Scholtz, C. H. (2005). Effects of fluazuron and ivermectin treatment of cattle on the structure of dung beetle communities. Agriculture, Ecosystems & Environment, 105, 649–656.

Lassey, K.R. (2007). Livestock methane emission: From the individual grazing animal through national inventories to the global methane cycle. Agricultural and Forest Meteorology, 142, 120–132.

Liebig, M., Alonso-Fernandez, A., Blübaum-Gronau, E., Boxall, A., Brinke, M., Carbonell, G., Egeler, P., Fenner, K., Fernández, C., Fink, G., Garric, J., Halling-Sørensen, B., Knacker, T., Krogh, K., Küster, A., Löffler, D., Porcel, M. A., Pope, L., Prasse, C., Römbke, J., Rönnefahrt, I., Schneider, M. K., Schweitzer, N., Tarazona, J. V., Ternes, T., Traunspurger, W., Wehrhan, A.,

Duis, K. (2010). Environmental risk assessment of ivermectin: A case study. Integrated Environmental Assessment and Management, 6, 567–87.

Lifschitz, A., Virkel, A., Imperiale, F., Pis, A. & Lanusse, C. (2002). Fármacos endectocidas: avermectinas y milbemicinas. In: Botana, L. M., Landoni, F. & Matín-Jiménez, T. (eds) Farmacología y Terapéutica Veterinaria.,. Madrid, España: McGraw-Hill-Interamericana, 545–558.

Lopez-Collado, J., Cruz-Rosales, M., Vilaboa-Arroniza, J., Martínez, I. and Gonzalez-Hernandez, H. (2017). Contribution of dung beetles to cattle productivity in the tropics: A stochastic-dynamic modeling approach. Agricultural Systems 155:78–87

Losey, J. E. & Vaughan, M. (2006). The economic value of ecological services provided by insects. BioScience, 56, 311–323.

Lumaret, J. P., Alvinerie, M., Hempel, H., ScallanaB, H.-J., Claret, D. & Römbke, J. (2007). New screening test to predict the potential impact of ivermectin-contaminated cattle dung on dung beetles. Veterinary Research, 38, 15–24.

Lumaret, J. P. & Errouissi, F. (2002). Use of anthelmintics in herbivores and evaluation of risks for the non target fauna of pastures. Veterinary research, 33, 547–562.

Lumaret, J. P., Errouissi, F., Floate, K., Römbke, J. & Wardhaugh, K. (2012). A review on the toxicity and non-target effects of macrocyclic lactones in terrestrial and aquatic environments. Current Pharmaceutical Biotechnology, 13, 1004–60.

Lumaret, J. P., Galante, E., Lumbreras, C., Mena, J., Bertrand, M., Bernal, J. L., Cooper, J., Kadiri, N. & Crowe, D. (1993). Field effects of ivermectin residues on dung beetles. Journal of Applied Ecology, 30, 428–436.

Lumaret, J. P. & Martínez, I. (2005). El impacto de productos veterinarios sobre insectos coprófagos: consecuencias sobre la degradación del estiércol en pastizales. Acta Zoológica Mexicana, 21, 115–123.

Martin, R. J., Robertson, A. P. & Wolstenholme, A. J. (2002). Mode of action of the macrocyclic lactones. En: J. Vercruysse y R. S. Rew (Eds.), Macrocyclic lactones in antiparasitic therapy. (Pp. 125-140). Wallingford, United Kingdom: CABI Publishing.

Martínez, M. I., Lumaret, J. P. Ortiz Zayas R. & Kadiri, N. 2017b. The effects of sublethal and lethal doses of ivermectin on the reproductive physiology and larval development of the dung beetle Euoniticellus intermedius. The Canadian Entomologist, 149(4):461-472.

Martínez, M.I., Ramírez-Hernández, A. y Lumaret, J.P. 2017a. Medicinas veterinarias, plaguicidas y los escarabajos del estiércol en la zona tropical de Palma Sola, Veracruz, México. Southwestern Entomologist 42 (2):563-574.

McKellar, Q. & Benchaoui, H. A. (1996). Avermectins and milbemycins. Journal of Veterinary Pharmacology and Therapeutics, 19, 331–351.

Merck & Company, I. (1996). Ivomec eprinex (eprinomectin) Pour-On for beef and dairy cattle: Environmental assessment. Report for NADA. Rahway, NJ, USA.

Montes de Oca, E., & Halffter, G. (1998). Invasion of Mexico by two dung beetles previously introduced into the United States. Studies on Neotropical Fauna and Environment, 33, 37–45.

Nichols, E., Spector, S., Louzada, J., Larsen, T. H., Amézquita, S. & Favila, M. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141, 1461–1474.

O´Hea, N. M., Kirwan, L., Giller, P. A. & Finn, J. A. (2010). Lethal and sub-lethal effects of ivermectin on north temperate dung beetles, Aphodius ater and Aphodius rufipes (Coleoptera: Scarabaeidae). Insect Conservation and Diversity, 3, 24–33.

Omura, S. (2008). Ivermectin: 25 years and still going strong. International journal of antimicrobial agents, 31, 91–8.

Penttilä, A., Slade, E. M., Simojoki, A., Riutta, T., Minkkinen, K. & Roslin, T. (2013). Quantifying beetle-mediated effects on gas fluxes from dung pats. PloS One, 8, e71454 doi:10.1371/journal.pone.0071454.

Pérez-Cogollo, L. C., Rodríguez-Vivas, R. I., Delfín-González, H., Reyes-Novelo, E. & Morón, M. A. (2015a). Life history of Onthophagus landolti Harold, 1880 (Coleoptera: Scarabaeidae), with descriptions of the preimaginal stages. The Coleopterists Bulletin, 69, 255–263.

Pérez-Cogollo, L. C., Rodríguez-Vivas, R. I., Delfín-González, H., Reyes-Novelo, E. & Ojeda-Chi, M. M. (2015b). Lethal and sublethal effects of ivermectin on Onthophagus landolti (Coleoptera: Scarabaeidae). Environmental Entomology, 44, 1634–1640.

Pérez-Cogollo, L. C., Rodríguez-Vivas, R. I., Reyes Novelo, E., Delfín-González, H. & Muñoz-Rodríguez, D. (2017). Survival and Reproduction of Onthophagus landolti (Coleoptera: Scarabaeidae) exposed to ivermectin residues in cattle dung. Bulletin of Entomological Research, 107, 118–125

Pfizer Inc (1996). Environmental Assessment Doramectin 0.5% pour-on solution for the treatment of parasitic infections in cattle. Report NADA 141-095EA. .

Pitterna, T., Cassayre, J., Hüter, O. F., Jung, P. M. J., Maienfisch, P., Kessabi, F. M., Quaranta, L. & Tobler, H. (2009). New ventures in the chemistry of avermectins. Bioorganic and Medicinal Chemistry, Elsevier Ltd 17, 4085–4095.

Ridsdill-Smith, T. J. (1988). Survival and reproduction of Musca vetustissima Walker (Diptera: Muscidae) and a Scarabaeine Dung Beetle in Dung of Cattle Treated With Avermectin B1. Journal of Austral Entomology Society, 175–178.

Ridsdill-Smith, T. J. & Hayles, L. (1987). Mortality of eggs and larvae of the bush fly Musca vetustissima Walker (Diptera: Muscidae), caused by Scarabaeine dung beetles (Coleoptera: Scarabaeidae) in favourable cattle dung. Bulletin of Entomological Research, 77, 731–736.

Rodríguez-Vivas, R. I., Arieta-Román, R. J., Perez-Cogollo, L. C., Rosado-aguilar, J. A., Ramírez-Cruz, G. T. & Basto-Estrella, G. (2010). Uso de lactonas macrocíclicas para el control de la garrapata Rhipicephalus (Boophilus) microplus en el ganado bovino. Archivos de Medicina Veterinaria, 42, 115–123.

Rodríguez-Vivas, R.I., Pérez-Cogollo, L.C., Rosado-Aguilar, J.A., Ojeda-Chi, M.M., Trinidad-Martinez, I., Miller, R.J., Li, A.Y., Pérez de León, A., Guerrero, F. & Guilherme, K. 2015. Rhipicephalus (Boophilus) microplus resistant to acaricides and ivermectin in cattle farms of Mexico. Revista Brasileira de Parasitologia Veterinária, 23(2), 113-122.

Rodríguez-Vivas, R. I., Rosado-Aguilar, J. A., Ojeda-Chi, M. M., Pérez-Cogollo, L. C., Trinidad-Martínez, I. & Bolio-González, M. E. (2014). Control integrado de garrapatas en la ganadería bovina. Ecosistemas y Recursos Agropecuarios, 1, 295–308.

Rougon, D., Rougon, C. Trichet, J. & Levieux, J. (1988). Enrichissement en matière organique d’un sol sahélien au Niger par les insects coprophages (Coléoptères, Scarabaeidae). Implications agronomiques. Revue de Ecologie et de Eiologie du Sol, 25, 413–434.

Salgado, V. L. (1998). Studies on the mode of action of spinosad: insect symtoms and physiological correlates. Pesticide Biochemistry and Physiology, 60, 91–102.

Sands, B., & Wall, R. (2016). Dung beetles reduce livestock gastrointestinal parasite availability on pasture. Journal of Applied Ecology, online in advance of print. http://dx.doi.org/10.1111/1365-2664.12821.

Slade, E. M., Riutta, T. Roslin, T. & Tuomisto, H. L. (2016). The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Scientific Reports, 6, 18140; doi: 10.1038/srep18140.

Shoop, W. L., Mrozik, H. & Fisher, M. H. (1995). Structure and activity of avermectins and milbemycins in animal health. Veterinary Parasitology, 59, 139–156.

Sommer, C., Grønvold, J., Holter, P. & Nansen, P. (1993). Effects of ivermectin on two afrotropical dung beetles, Onthophagus gazella and Diastellopalpus quinquedens (Coleoptera: Scarabaeidae). Veterinary Parasitology, 48, 171–9.

Sommer, C. & Nielsen, B. O. (1992). Larvae of the dung beetle Onthophagus gazella F. (Col., Scarabaeidae) exposed to lethal and sublethal ivermectin concentrations. Journal of Applied Entomology, 114, 502–509.

Sommer, C. & Steffansen, B. (1993). Changes with time after treatment in the concentrations of ivermectin in fresh cow dung and in cow pats aged in the field. Veterinary Parasitology, 48, 67–73.

Sommer, C., Steffansen, B., Nielsen, B. O., Gronvold, J., Jensen, K. M., Jespersen, J. B., Springborg, J. & Nansen, P. (1992). Ivermectin excreted in cattle dung after subcutaneous injection or pour-on treatment: concentrations and impact on dung fauna. Bulletin of Entomological Research, 82, 257–264.

Strong, L. & Wall, R. (1994). Effects of ivermectin and moxidectin on the insects of cattle dung. Bulletin of Entomological Research, Cambridge University Press 84, 403–409.

Strong, L., Wall, R., Woolford, A. & Djeddour, D. (1996). The effect of faecally excreted ivermectin and fenbendazole on the insect colonisation of cattle dung following the oral administration of sustained-release boluses. Veterinary Parasitology, 62, 253–266.

Suárez, V. H., Lifschitz, A. L., Sallovitz, J. M. & Lanusse, C. E. (2009). Effects of faecal residues of moxidectin and doramectin on the activity of arthropods in cattle dung. Ecotoxicology and Environmental Safety, 72, 1551–8.

Suarez, V. H., Lifschitz, A., Sallovitz, J. M. & Lanusse, C. E. (2003). Effects of ivermectin and doramectin faecal residues on the invertebrate colonization of cattle dung. Journal of Applied Entomology, 127, 481–488.

Sutton, G., Bennett, J. & Bateman, M. (2014). Effects of ivermectin residues on dung invertebrate communities in a UK farmland habitat. Insect Conservation and Diversity, 7, 64–72.

Taylor, M. A. (2001). Recent developments in ectoparasiticides. Veterinary Journal, 161, 253–268.

Verdú, J. R., Cortez, V., Ortiz, A. J., González-Rodríguez, E., Martinez-Pinna, J., Lumaret, J. P., Lobo, J. M., Numa, C. & Sánchez-Piñero, F. (2015). Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Scientific Reports, 5, 1–10.

VICH, International Cooperation on Harmonisation of Technical Requirements for Registration of Veterinary Medical Products. (2004). Environmental impact assessment for veterinary medical products. Phase II guidance., 1–36.

Wall, R. & Beynon, S. (2012). Area-wide impact of macrocyclic lactone parasiticides in cattle dung. Medical and veterinary entomology, 26, 1–8.

Wardhaugh, K., Holter, P. & Longstaff, B. (2001a). The development and survival of three species of treated with controlled-release formulations of ivermectin or albendazole. Australian Veterinary Journal, 79, 125–132.

Wardhaugh, K., Longstaff, B. C. & Morton, R. (2001b). A comparison of the development and survival of the dung beetle, Onthophagus taurus (Schreb.) when fed on the faeces of cattle treated with pour-on formulations of eprinomectin or moxidectin. Veterinary Parasitology, 99, 155–68.

Wardhaugh, K. & Mahon, R. J. (1991). Avermectin residues in sheep and cattle dung and their effects on dung-beetle (Coleoptera: Scarabaeidae) colonization and dung burial. Bulletin of Entomological Research, 81, 333–339.

Wardhaugh, K., Mahon, R. J., Axelsen, A., Rowland, M. W. & Wanjura, W. (1993). Effects of ivermectin residues in sheep dung on the development and survival of the bushfly, Musca vetustissima Walker and a scarabaeine dung beetle, Euoniticellus fulvus Goeze. Veterinary Parasitology, 48, 139–57.

Wardhaugh, K. & Rodriguez-Menendez, H. (1988). The effects of the antiparasitic drug, ivermectin, on the development and survival of the dung-breeding fly, Orthelia cornicina (F.) and the scarabaeine dung beetles, Copris hispanus L., Bubas bubalus (Oliver) and Onitis belial. Journal of Applied Entomology, 106, 381–389.

Yokoyama, K., Hideaki, K. & Hirofumi, T. (1991). Paracoprid dung beetles and gaseous loss of nitrogen from cow dung. Soil Biology and Biochemistry, 23, 643–647.

Yoshii, K., Kaihara, A., Tsumura, Y., Ishimitsu, S. & Tonogai, Y. (2000). Liquid chromatographic determination of emamectin, milbemectin, ivermectin and abamectin in crops and confirmation by liquid chromatography-mass spectrometry. Journal of Chromatography A, 896, 75–85.




DOI: http://dx.doi.org/10.22201/ib.20078706e.2018.4.2508

Enlaces refback

  • No hay ningún enlace refback.


     Ed. en Jefe: Fernando Álvarez Noguera
     falvarez@ib.unam.mx
     Tel: (55)5622-9164
    
     ISSN-versión electrónica: 2007-8706
     ISSN-impreso:1870-3453
     FACTOR DE IMPACTO 2019 (publicado en 2020): 0.585
     FI a 5 años: 0.971
     CiteScore (Scopus, 2020): 1.4
 
     Licencia Creative Commons 
Revista Mexicana de Biodiversidad por IB-UNAM se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
 
       

 

Revista Mexicana de Biodiversidad, Año 3, No. 12, enero-marzo 2014, es una publicación trimestral editada por la Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, Ciudad de México, a través del Instituto de Biología, Tercer Circuito Universitario s/n, Ciudad Universitaria, Col. Copilco, Del. Coyoacán, C.P. 04510, Ciudad de México, Tel. (55)56229164, http://www.revista.ib.unam.mx/index.php/bio/, falvarez@ib.unam.mx.Editor responsable: Dr. Fernando Álvarez Noguera. Reserva de Derechos al uso Exclusivo No. 04-2013-092709142100-203, ISSN: 2007-8706, ambos otorgados por el Instituto Nacional del Derecho de Autor, Responsable de la última actualización de este número, Instituto de Biología, UNAM, Dr. Fernando Álvarez Noguera, Tercer Circuito Universitario s/n, Ciudad Universitaria, Col. Copilco, Del. Coyoacán, C.P. 04510, Ciudad de México, fecha de la última modificación: 25 de agosto de 2016.

Las opiniones expresadas por los autores, no necesariamente reflejan la postura del editor de la publicación. Se autoriza la reproducción total o parcial de los textos aquí publicados siempre y cuando se cite la fuente completa y la dirección electrónica de la publicación.

http://www.revista.ib.unam.mx/index.php/bio/