La Ecología Evolutiva del Desarrollo en México

Autores/as

  • Elena R. Álvarez-Buylla Universidad Nacional Autónoma de México http://orcid.org/0000-0002-7938-6473
  • Adriana Garay-Arroyo
  • Berenice García-Ponce de León
  • María de la Paz Sánchez
  • Emmanuel González-Ortega
  • José Dávila-Velderrain
  • Juan Carlos Martínez-García
  • Alma Piñeyro-Nelson

DOI:

https://doi.org/10.1016/j.rmb.2017.10.009

Palabras clave:

Eco-Evo-Devo, Arabidopsis, Epigenética, Modelos de redes complejas, Mecanismos del desarrollo

Resumen

La biología evolutiva se enfoca al estudio de los patrones de variación fenotípica heredables dentro de las poblaciones y su dinámica en tiempos
transgeneracionales. Históricamente, los modelos evolutivos a nivel de las poblaciones se han desarrollado bajo supuestos simples. Dos de ellos
particularmente importantes son: 1) el cambio genético es un indicador directo de la variación fenotípica y 2) existe aditividad de los impactos
genéticos sobre el fenotipo. Un modelo más certero de evolución biológica debería de considerar explícitamente el mapeo entre genotipo y fenotipo y viceversa, ya que los mecanismos que median el desarrollo de los organismos y su interacción con el ambiente son los que generan la variación fenotípica. Una perspectiva dinámica no lineal es imprescindible para entender cómo se genera la variación fenotípica dado un fondo genético particular. Dicho de otra manera, es necesario entender los mecanismos sistémicos del mapeo entre genotipo y fenotipo en un contexto ecológico y evolutivo. El campo que comprende este enfoque es el de la Ecología Evolutiva del Desarrollo (Eco-Evo-Devo), el cual tiene además un enfoque sistémico. En México este campo ha crecido de manera incipiente a través del análisis de los mecanismos de desarrollo con enfoques de biología de sistemas, principalmente. En este artículo resumimos avances de este campo de estudio en México y cuáles son los principales grupos de investigación en el país. También evaluamos los impactos biomédicos de tomar esta perspectiva.

Biografía del autor/a

Elena R. Álvarez-Buylla, Universidad Nacional Autónoma de México

Departamento de Ecología Funcional

Citas

Aceves-García, P., Alvarez-Buylla, E. R., Garay-Arroyo, A., García-Ponce, B., Muñoz, R. and Sanchez M. P. (2016). Root Architecture Diversity and Meristem Dynamics in Different Populations of Arabidopsis thaliana. Front Plant Sci 7, 858.

Aldana, M., Balleza, E., Kauffman, S. and Resendiz, O. (2007). Robustness and evolvability in genetic regulatory networks. Journal of theoretical biology, 245, 433-448.

Almeida, A. M. R., Yockteng, R., Schnable, J., Alvarez-Buylla, E. R., Freeling, M. and Specht, C. D. (2014). Co-option of the polarity gene network shapes filament morphology in angiosperms. Scientific Reports, 4, 6194.

Alonso-Blanco, C., Aarts, M. G., Bentsink, L., Keurentjes, J. J., Reymond, M., Vreugdenhil, D. and Koornneef, M. (2009). What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21, 1877-1896.

Altieri, M. (2000). Ecological impacts of transgenic crops on agroecosystem health. Ecosystem Health, 6, 13-23.

Álvarez-Buylla, E., Benítez, Espinosa-Soto, C. (2011). Mutually reinforcing patterning mechanisms. Nature Reviews Molecular and Cell Biology. 12:265-273.

Álvarez-Buylla, E. R., Liljegren, S. J., Pelaz, S., Gold, S. E., Burgeff, C., Ditta, G. S., Vergara-Silva, F. and Yanofsky, M. F. (2000a). MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes. Plant Journal, 24(4), 457–466.

Álvarez-Buylla, E. R., Pelaz, S., Liljegren, S. J., Gold, S. E., Burgeff, C., Ditta, G. S., Ribas de Pouplana, L., Martínez-Castilla, L. and Yanofsky, M. F. (2000b). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. PNAS, 97, 5328–5333.

Álvarez-Buylla, E., Benítez, M., Balleza, E., Chaos, A., Espinosa-Soto, C. and Padilla-Longoria, P. (2007a) Gene regulatory network models for plant development. Current Opinion in Plant Biology, 10, 83–91.

Álvarez-Buylla, E. R., Benítez, M. and Espinosa-Soto, C. (2007b). Phenotypic evolution is restrained by complex developmental processes. HFSP Journal, 1(2), 99–103.

Álvarez-Buylla, E. R., Chaos, A., Aldana, M., Benítez, M., Cortes-Poza, Y., Espinosa-Soto, C., Hartasánchez, D. A., Lotto, R. B., Malkin, D., Santos, G. J. and Padilla-Longoria, P. (2008). Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PloS One, 3, e3626.

Álvarez-Buylla, E. R., Azpeitia, E., Barrio, R., Benítez, M., y Padilla-Longoria, P. (2010a). From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: Making biological sense of theoretical approaches. Seminars in Cell and Developmental Biology, 21, 108-117.

Álvarez-Buylla, E., Benítez, M., Corvera-Poiré, A., Chaos Cador, Á., de Folter, S., Gamboa de Buen, A., Garay-Arroyo, A., García-Ponce, B., Jaimes-Miranda, F., Pérez-Ruiz, R. V., Piñeyro-Nelson, A. and Sánchez-Corrales, Y. (2010b). Flower Development. The Arabidopsis Book, e0127, 1-57p.

Álvarez-Buylla, E. R., Ambrose, B. A., Flores-Sandoval, E., Englund, M., Garay-Arroyo, A., García-Ponce, B., de la Torre-Bárcena, E., Espinosa-Matías, S., Martínez, E., Piñeyro-Nelson, A., Engström, P. and Meyerowitz, M. (2010c). B-Function Expression in the Flower Center Underlies the Homeotic Phenotype of Lacandonia schismatica (Triuridaceae). The Plant Cell, 22: 3543-3559.

Álvarez-Buylla, E. R., Dávila-Velderrain, J., Martínez-García, J. C. (2016). Elena R. Systems Biology Approaches to Development beyond Bioinformatics: Nonlinear Mechanistic Models Using Plant Systems. BioScience. doi: 10.1093/biosci/biw027.

Álvarez-Buylla, E. R., Piñeyro-Nelson, A., Turrent-Fernández, A., Nieto-Sotelo, J., Wegier, A., Alavez, V., Milán, L., Traavik, T. y Quist, D. (2013). Insuficiencias, Riesgos y Peligros de la Ingeniería Genética en la Agricultura: Alternativas a la trayectoria tecnológica predominante. En “El maíz en peligro ante los transgénicos” (Unión de Científicos Comprometidos con la Sociedad. ed), UCCS, Mexico 111- 117.

Ambrose, B. A., Espinosa-Matías, S., Vázquez-Santana, S., Vergara-Silva, F., Martínez, E., Márquez-Guzmán, J. and Álvarez-Buylla, E. R. (2006). Comparative developmental series of the Mexican triurids support a euanthial interpretation for the unusual reproductive axes of Lacandonia schismatica (Triuridaceae). American Journal of Botany, 93, 15-35.

Andrés, F. and Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Genetics, 13, 627-639.

Antoniou, M., Robinson, C, Fagan, J. (2012). GMO Myths and Truths: An evidence-based examination of the claims made for the safety and efficacy of genetically modified crops, . In Food Freedom (Earth Open Source, ed).

Ayala-Ortega, E., Arzate-Mejia, R., Perez-Molina, R., Gonzalez-Buendia, E., Meier, K., Guerrero, G., and Recillas-Targa, F. (2016). Epigenetic silencing of miR-181c by DNA methylation in glioblastoma cell lines. BMC Cancer, 16, 226.

Azpeitia, E. and Alvarez-Buylla, E. R. (2012). A complex systems approach to Arabidopsis root stem-cell niche developmental mechanisms: From molecules, to networks, to morphogenesis. Plant Molecular Biology. http://doi.org/10.1007/s11103-012-9954-6.

Azpeitia, E., Benítez, M., Vega, I., Villarreal, C. and Alvarez-Buylla, E. R. (2010). Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Systems Biology, 4, 134.

Azpeitia, E. y García, M. (2014). Multiscale Modeling of Dynamic Systems for Evolution. In: Frontiers in Ecology, Evolution and Complexity. Benítez, M., Miramontes, O., and Valiente, A. (eds). Copit Arxives EditoraC3.

Azpeitia, E., Weinstein, N., Benitez, M., Mendoza, L. and Alvarez-Buylla, E. R. (2013). Finding Missing Interactions of the Arabidopsis thaliana Root Stem Cell Niche Gene Regulatory Network. Front Plant Sci, 4, 110.

Balleza, E., Alvarez-Buylla, E. R., Chaos, A., Kauffman, S., Shmulevich, I. and Aldana, M. (2008). Critical dynamics in genetic regulatory networks: examples from four kingdoms. PLoS One, 3, e2456.

Barrio, R. A., Hernández-Machado, A., Varez, C., Romero-Arias, J. R., Alvarez-Buylla, E. R. (2010). Flower Development as an Interplay between Dynamical Physical Fields and Genetic Networks. PLoS ONE, 5, e13523.

Barrio, R. A., Romero-Arias, J. R., Noguez, M. A., Azpeitia, E., Ortiz-Gutiérrez, E., Hernández-Hernández, V., Cortes-Poza, Y. and Álvarez-Buylla, E. R. (2013). Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: the Arabidopsis thaliana root as a study system. PLoS Comput Biol, 9, e1003026.

Beckie, H. J., Hall, L. M., Simard, M. J., Leeson, J. Y., Willenborg, C. J. (2010). A framework for postrelease environmental monitoring of second-generation crops with novel traits. Crop Science, 50, 1587-1604.

Beemster, G. T. and Baskin, T. I. (1998). Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol, 116, 1515-1526.

Belhaj, K., Chaparro-García, A., Kamoun, S., Patron, N., Nekrasov, V. (2015) Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotech, 32, 76-84.

Benbrook, C. (2012). Impacts of genetically engineered crops on pesticide use in the U.S. the first sixteen years. Environmental Sciences Europe 24, 99164-96242.

Benítez, M. and Alvarez-Buylla, E. R. (2010). Dynamic-module redundancy confers robustness to the gene regulatory network involved in hair patterning of Arabidopsis epidermis. BioSystems, 102, 11-15.

Benítez, M., Azpeitia, E. and Alvarez-Buylla, E. R. (2013). Dynamic models of epidermal patterning as an approach to plant eco-evo-devo. Current Opinion in Plant Biology, 16, 11-18.

Benítez, M., Espinosa-Soto, C., Padilla-Longoria, P. and Alvarez-Buylla, E. R. (2008). Interlinked nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis epidermis: a dynamic spatial model. BMC Systems Biology, 2, 98.

Benítez, M., Espinosa-Soto, C., Padilla-Longoria, P., Díaz, J. and Alvarez-Buylla, E. R. (2007). Equivalent genetic regulatory networks in different contexts recover contrasting spatial cell patterns that resemble those in Arabidopsis root and leaf epidermis: A dynamic model. International Journal of Developmental Biology, 51, 139-155.

Benyshek, D. C. (2013). The “early life” origins of obesity-related health disorders: New discoveries regarding the intergenerational transmission of developmentally programmed traits in the global cardiometabolic health crisis. American Journal of Physical Anthropology, 152, 79-93.

Berger, S. L., Kouzarides, T., Shiekhattar, R., and Shilatifard, A. (2009). An operational definition of epigenetics. Genes Dev, 23, 781-783.

Berry, S. and Dean, C. (2015). Environmental perception and epigenetic memory: mechanistic insight through FLC. Plant J, 83, 133-148.

Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K. and Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 433, 39-44.

Bortesi, L. and Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33, 41-52.

Burgeff, C., Huerta, E., Acevedo, F., Sarukhán, J. (2014) How much can GMO and non-GMO cultivars coexist in a megadiverse country? AgBioForum 17, 90-101.

Burssens, S., Himanen, K., van de Cotte, B., Beeckman, T., Van Montagu, M., Inzé, D. and Verbruggen, N. (2000). Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta, 211, 632-40.

Caballero, L., Benítez, M., Alvarez-buylla, E. R., Hernández, S., Arzola, A. V., y Cocho, G. (2012). An Epigenetic Model for Pigment Patterning Based on Mechanical and Cellular Interactions. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 318, 209-223.

Cecchini, E., Al-Kaff, N., Bannister, A., Giannakou, M., McCallum, D., Maule, A., Milner, J., Covey, S. (1998). Pathogenic interactions between variants of cauliflower mosaic virus and Arabidopsis thaliana. J Exp Bot, 49, 731-737.

Chaos, A., Aldana, M., Espinosa-Soto, C., de Leon, B. G. P., Arroyo, A. G. and Alvarez-Buylla, E. R. (2006). From genes to flower patterns and evolution: Dynamic models of gene regulatory networks. Journal of Plant Growth Regulation, 25, 278-289.

Chazen, O. and Neumann, P. M. (1994). Hydraulic signals from the roots and rapid cell-wall hardening in growing maize (Zea mays L.) leaves are primary responses to polyethylene glycol-induced water deficits. Plant Physiol, 104, 1385–1392.

Chen, H., Bodulovic, G., hall, P., Moore, A., Higgins, T., Djordjevic, M. and Rolfe, B. (2009). Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean a-amylase inhibitor gene. Proteomics 9, 4406-4415.

Clark, N. M., de Luis Balaguer, M. A. and Sozzani, R. (2014). Experimental data and computational modeling link auxin gradient and development in the Arabidopsis root. Front Plant Sci, 7, 328.

Comstock, J. P. (2002). Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. J Exp Bot, 53, 195-200.

Couot-Gastelier, J. and Vartanian, N. (1995). Drought-induced Short Roots in Arabidopsis thaliana: Structural Characteristics. Botanica Acta, 108, 407–413.

Davies, W. J. and Zhang, J. H. (1991). Root signals and the regulation of growth and development of plants in drying soil. Ann Rev of Plant Physiol and Plant Molec Biol, 42, 55–76.

Davila-Velderrain, J. and Alvarez-Buylla, E. R. (2014). Bridging genotype and phenotype. Frontiers in Ecology, Evolution and Complexity, CopIt ArXives, 144-154.

Davila-Velderrain, J., Juarez-Ramiro, L., Martinez-Garcia, J.C. and Alvarez-Buylla, E.R. (2015a). Methods for Characterizing the Epigenetic Attractors Landscape Associated with Boolean Gene Regulatory Networks. arXiv preprint arXiv:1510.04230.

Davila-Velderrain, J., Martinez-Garcia, J. C. and Alvarez-Buylla, E. R. (2014a). Epigenetic Landscape Models: The Post-Genomic Era. bioRxiv, 4192.

Davila-Velderrain, J., Martinez-Garcia, J. C. and Alvarez-Buylla, E. R. (2015b). Modeling the epigenetic attractors landscape: toward a post-genomic mechanistic understanding of development. Frontiers in Genetics, 6, 160.

Davila-Velderrain, J., Martinez-Garcia, J. C. and Alvarez-Buylla, E. R. (2015c). Descriptive vs. Mechanistic Network Models in Plant Development in the Post-Genomic Era. Methods Mol Biol, 1284, 455-79.

Davila-Velderrain, J., Martinez-Garcia, J. C. and Alvarez-Buylla, E. R. (2016). Dynamic network modelling to understand flowering transition and floral patterning. Journal of Experimental Botany, 67, 2565-2572.

Davila-Velderrain, J., Servin-Marquez, A. and Alvarez-Buylla, E. R. (2014b). Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes. Molecular Biology and Evolution, 31, 560-73.

Davila-Velderrain, J., Villarreal, C. and Alvarez-Buylla, E. R. (2015). Reshaping the epigenetic landscape during early flower development: induction of attractor transitions by relative differences in gene decay rates. BMC Systems Biology, 9, 1.

De Marchis, F., Valeri, M., Pompa, A., Bouveret, E., Alagna, F., Grisan, S., Stanzione, V., Mariotti, R., Cultrera, N., Baldoni, L. and Belluci, M. (2016). Overexpression of the olive acyl carrier protein gene (OeACP1) produces alterations in fatty acid composition of tobacco leaves. Transgenic Research, 25, 45-61.

Díaz, J. and Alvarez-Buylla, E. R. (2006). A model of the ethylene signaling pathway and its gene response in Arabidopsis thaliana: pathway cross-talk and noise-filtering properties. Chaos, 16, 23112.

Díaz, J. and Alvarez-Buylla, E. R. (2009). Information flow during gene activation by signaling molecules: ethylene transduction in Arabidopsis cells as a study system. BMC Systems Biology, 3, 48.

Dinneny, J. R., Long, T. A., Wang, J. Y., Jung, J. W., Mace, D., Pointer, S., Barron, C., Brady, S. M., Schiefelbein, J. and Benfey, P. N. (2008). Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science, 320, 942-945.

Dobzhansky, T. (1937). Genetics and the Origin of Species. Columbia University Press.

Dyer, G. A., Serratos-Hernandez, J. A., Perales, H. R., Gepts, P., Pineyro-Nelson, A., Chavez, A., Salinas-Arreortua, N., Yunez-Naude, A., Taylor, J. E., and Alvarez-Buylla, E. R. (2009). Dispersal of transgenes through maize seed systems in Mexico. PloS One, 4, e5734.

Egger, G., Liang, G., Aparicio, A., and Jones, P.A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429, 457-463.

Ellstrand, N. (2003). Current knowledge of gene flow in plants: implications for transgene flow. Phli Trans R Soc Lond, 358, 1163-1170.

Enciso, J., Mayani, H., Mendoza, L. and Pelayo, R. (2016). Modeling the Pro-inflammatory Tumor Microenvironment in Acute Lymphoblastic Leukemia Predicts a Breakdown of Hematopoietic-Mesenchymal Communication Networks. Frontiers in Physiology, 7, 349.

Espinosa-Matías, S.; Vergara-Silva, F.; Vázquez-Santana, S.; Martínez-Zurita, E.; Márquez Guzmán, J. 2012. Complex patterns of morphogenesis, embryology, and reproduction in Triuris brevistylis, a species of Triuridaceae (Pandanales) closely related to Lacandonia schismatica. Botany., 90: 1133-1151.

Espinosa‐Soto, C. (2016). Selection for distinct gene expression properties favours the evolution of mutational robustness in gene regulatory networks. Journal of Evolutionary Biology. (en prensa).

Espinosa-Soto, C., Immink, R. G., Angenent, G. C., Alvarez-Buylla, E. R. and de Folter, S. (2014). Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network. BMC Syst Biol, 8, 9.

Espinosa‐Soto, C., Martin O. C., Wagner, A. (2011a). Phenotypic robustness can increase phenotypic variability after nongenetic perturbations in gene regulatory circuits. Journal of Evolutionary Biology, 24, 1284-97.

Espinosa-Soto, C., Martin, O. C, and Wagner, A. (2011b). Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits. BMC evolutionary biology, 11, 5.

Espinosa-Soto, C., Martin, O. C., and Wagner, A. (2011c). Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits. BMC Evolutionary Biology, 11, 5.

Espinosa-Soto, C., Padilla-Longoria, P. and Alvarez-Buylla, E. R. (2004). A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell, 16, 2923–2939.

Espinosa-Soto C, Wagner A. (2010). Specialization can drive the evolution of modularity. PLoS Comput Biol., 6, e1000719.

Feng, S., Jacobsen, S. E. and Reik, W. (2010). Epigenetic reprogramming in plant and animal development. Science 330, 622-627.

Fisher, R. (1930). The Genetical Theory of Natural Selection. Oxford University Press, 292 pp.

Frensch, J. and Hsiao, T. C. (1994). Transient Responses of Cell Turgor and Growth of Maize Roots as Affected by Changes in Water Potential. Plant Physiol, 104, 247-254.

Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R. and Jürgens, G. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 426, 147-53.

Galinha, C., Hofhuis, H., Luijten, M., Willemsen, V., Blilou, I., Heidstra, R. and Scheres, B. (2007). PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature, 449, 1053-7.

Galinha, C., Bilsborough, G. and Tsiantis, M. (2009). Hormonal input in plant meristems: A balancing act. Semin Cell Dev Biol, 20, 1149-56.

Garay-Arroyo, A., Sánchez, M. P., García-Ponce, B., Azpeitia, E. and Alvarez-Buylla, E.R. (2012). Hormone symphony during root growth and development. Dev Dyn, 241, 1867-85.

Garay-Arroyo, A., Ortiz-Moreno, E., de la Paz Sanchez, M., Murphy, A. S., Garcia-Ponce, B., Marsch-Martinez, N., de Folter, S., Corvera-Poiré, A., Jaimes-Miranda, F., Pacheco-Escobedo, M. A., Dubrovsky, J. G., Pelaz, S. and Alvarez-Buylla, E. R. (2013). The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. The EMBO Journal, 32, 2884-95.

García-Cruz, K. V., García-Ponce, B., Garay-Arroyo, A., Sanchez, M. P., Ugartechea-Chirino, Y., Desvoyes, B., Pacheco-Escobedo M. A., Tapia-López, R., Ransom-Rodríguez, I., Gutierrez, C. and Alvarez-Buylla, E. R. (2016). The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components. Annals of Botany, mcw126.

Gilbert, S. F. (2012). Ecological developmental biology: environmental signals for normal animal development. Evolution and development, 14, 20-28.

Gilbert, S. F. and Epel, D. (2009). Ecological Developmental biology: Integrating Epigenetics, Medicine and Evolution. Sinauer Associated, Inc.

Goldbergh, K. B., Kiernan, J. and Sheperd, R. (1991). A disease syndrome associated with expression of gene VI of Caulimoviruses may be a nonhost reaction. Molec Plant -Microbe Interactions 4, 182-189.

Goodwin, B. (1994). How the Leopard Changed its Spots: The Evolution of Complexity, Scribner, Princeton University Press, 252 pp.

Haldane, J. B. S. (1932). The Causes of Evolution. Longman, Green and Co. reimpresión de la Princeton University Press.

Hales, C. N. and Barker, D. J. P. (2013). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. International Journal of Epidemiology, 42, 1215-1222.

Han, P., García-Ponce, B., Fonseca-Salazar, G., Alvarez-Buylla, E. R. and Yu, H. (2008). AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT independent photoperiod pathway. Plant J., 55, 253-265.

Hapiak, M., Li, Y., Agama, K., Swade, S., Okenka, G., Falk, J., Khandekar, S., Raikhy, G., Anderson, A., Pollock, J., Zellner, W., Schoelz, J. and Leisner, S. (2008). Cauliflower mosaic virus gene VI product N-terminus contains regions involved in resistance-breakage, self-association and interactions with movement protein. Virus Res, 138, 119-129.

Harris, J. (2006). Keeping Cuba healthy. BBC News.

Heard, E. and Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: Myths and mechanisms. Cell, 157, 95-109.

Hernández-Hernández, T., Martínez-Castilla, L. P. and Alvarez-Buylla, E. R. (2007). Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Molecular Biology and Evolution, 24, 465–481.

Hernández-Hernández, V., Rueda, D., Caballero, L., Alvarez-Buylla, E. R. and Benítez, M. (2014). Mechanical forces as information: an integrated approach to plant and animal development. Front Plant Sci, 10, 265.

Hsiao, T. C. and Xu, L. K. (2000). Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot, 51, 1595-616.

Ho, M. (1998). Fatal flaws in food safety assessment: critique of the joint FAO/WHO biotechnology and food safety report. Environmental and Nutritional Interactions, 2, 51-84.

Hsu, P., Lander, E., Zhang, F. (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262-1278.

Jablonka, E., and Lamb, M. J. (2002). The changing concept of epigenetics. Ann N Y Acad Sci. 981, 82-96.

Jablonka, E. and Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral and symbolic variation in the history of life. Cambridge, Massachusetts, USA. MA: MIT press.

Jablonka, E. and Raz, G. (2009). Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly review of biology, 84, 131-176.

James, C. (2014). Global Status of Commercialized Biotech/GM Crops: 2014. In ISAAA Brief, Ithaca, NY.

Johal, G. S. and Huber, D. M. (2009). Glyphosate effects on diseases of plants. Eur Journal of Agronomy, 31, 144-152.

Johanson, U., West, J., Lister, C., Michaels, S. D., Amasino, R. M. and Dean, C. (2000). Molecular analysis of FRIGIDA, a major determinant of natural varition in Aradopsis flowering time. Science, 290, 344-347.

Jones, A. L. and Sung, S. (2014). Mechanisms underlying epigenetic regulation in Arabidopsis thaliana. Integr Comp Biol, 54, 61-67.

Karlsson, B. H., Sills, G. R. and Nienhuis, J. (1993). Effects of photoperiod and vernalization on the number of leaves at flowering in 32 Arabidopsis thaliana (Brassicaceae) ecotypes. Am. J. Bot., 80, 646–48.

Kauffman, Stuart (1969). "Metabolic stability and epigenesis in randomly constructed genetic nets". Journal of Theoretical Biology. 22 (3): 437–467. doi:10.1016/0022-5193(69)90015-0. PMID 5803332.

Kivimäki, M., Kärkkäinen, K., Gaudeul, M., Løe, G. and Agren, J. (2007). Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata. Mol Ecol, 16, 453-462.

Koornneef, M., Alonso-Blanco, C. and Vreugdenhil, D. (2004). Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev. Plant Biol., 55, 141-172.

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705.

Lawton-Rauh, A., Alvarez-Buylla, E. and Purugganan, M. (2000). Molecular evolution of flower development. Trends in Ecology y Evolution (Personal Edition), 15, 144-149.

Lewontin, R. C. (1974). The genetic basis of evolutionary change. New York: Columbia University Press.

Lövei G., A., D.A., Arpaia, S. (2009). Transgenic insecticidal crops and natural enemies: a detailed review of laboratory studies. Envirenmental Entomology, 38, 293-306.

Liu, Y., Geyer, R., Van Zanten, M., Carles, A., Li, Y., Horold, A., Van Nocker, S. and Soppe, W. J. (2011). Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy. PLoS One 6, e22241.

Macchi Leite, G., Rincón Sánchez, F., Ruiz Torres, N. A. and Castillo González, F. (2010). Selección y mantenimiento de poblaciones. Una perspectiva para la conservación in situ de la diversidad genética del maíz. Revista fitotecnia mexicana, 33(spe4), 43-47.

Mähönen, A. P., ten Tusscher, K., Siligato, R., Smetana, O., Díaz-Triviño, S., Salojärvi, J., Wachsman, G., Prasad, K., Heidstra, R. and Scheres, B. (2014). PLETHORA gradient formation mechanism separates auxin responses. Nature, 515, 125-9.

Marcellini, S., González, F., Sarrazin, A. F., Pabón Mora, N., Benítez, M., Piñeyro-Nelson, A. and Da Fonseca, R. N. (2016). Evolutionary Developmental Biology (EvoDevo) Research in Latin America. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. (en prensa).

Martinez-Castilla, L. P. and Alvarez-Buylla, E. R. (2003). Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. PNAS, 100, 13407-12.

Martinez-Sanchez, M. E., Mendoza, L., Villarreal, C. and Alvarez-Buylla, E. R. (2015). A Minimal Regulatory Network of Extrinsic and Intrinsic Factors Recovers Observed Patterns of CD4+ T Cell Differentiation and Plasticity. PLOS Computational Biology, 11, e1004324.

Martínez-Zambrano, G. M., Galán, J. D. M., González, F. C. and Muñoz, M. L. (2000). Magnitud y linealidad de la respuesta a la selección masal en Maíz en función de los ambientes de selección y de evaluación. Agrociencia, 34, 429-436.

McCree, K. J. and Davis, S. D. (1974). Effect of Water Stress and Temperature on Leaf Size and on Size and Number of Epidermal Cells in Grain Sorghum. Crop Sci, 14, 751-755.

Méndez-López, L. F., Davila-Velderrain, J., Enríquez-Olguín, C., Domínguez-Hüttinger, E., Martinez-Garcia, J. C. and Alvarez-Buylla, E. R. (2016). Dynamic network and epigenetic landscape model of a regulatory core underlying spontaneous immortalization and epithelial carcinogenesis, 11. Molecular Networks. Retrieved from http://arxiv.org/abs/1604.02208

Mendoza, L. (2013). A Virtual Culture of CD4+ T Lymphocytes. Bulletin of Mathematical Biology, 75, 1012–1029.

Mendoza, L. and Alvarez-Buylla, E. R. (1998). Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J Theor Biol, 193, 307-319.

Mendoza, L. and Alvarez-Buylla, E. R. (2000). Genetic regulation of root hair development in Arabidopsis thaliana: A network model. Journal of Theoretical Biology, 204, 311–326.

Mendoza, L., Thieffry, D. and Alvarez-Buylla, E. R. (1999). Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics (Oxford, England), 15, 593-606.

Michaels, S. D. and Amasino, R. M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949-956.

Molitor, A. M., Bu, Z., Yu, Y., and Shen, W. H. (2014). Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet 10, e1004091.

Motta S. S., Cluzel, P. and Aldana, M. (2015). Adaptive resistance in bacteria requires epigenetic inheritance, genetic noise, and cost of efflux pumps. PloS One, 10, e0118464.

Nakamich, N. (2015). Adaptation to the Local Environment by Modifications of the Photoperiod Response in Crops. Plant Cell Physiol, 56, 594-604.

Neumann, P. M. (1993). Rapid and reversible modifications of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and removal of NaCl. Plant Cell and Environment, 16, 1107-1114.

Nieto-Sotelo, J., Vázquez L., Villa J. M., Ávila A. X., Rojas C. I., Aguilar C., Rangel L. M., Pérez S., Babu, R., Trachsel S., Zhang X. and Cassab G. I. (2016). Importance of mesocotyl and plumule growth on heat and drought avoidance in modern maize hybrids: physiology and GWAS. En: 58th Annual Maize Genetics Conference (memorias) Florida, EE.UU. 17-20 marzo p. 61.

Pérez-Ruiz, R. V., García-Ponce, B., Marsch-Martínez, N., Ugartechea-Chirino, Y., Villajuana-Bonequi, M., de Folter, S., Azpeitia, E., Dávila-Velderrain, J., Cruz-Sánchez, D., Garay-Arroyo, A., Sánchez, M. P., Estévez-Palmas, J. M., and Alvarez-Buylla, E. R. (2015). XAANTAL2 (AGL14) is an important component of the complex gene regulatory network that underlies Arabidopsis shoot apical meristem transitions. Molecular Plant, 8, 796-813.

Perrot-Rechenmann, C. (2010). Cellular responses to auxin: division versus expansion. Cold Spring Harb. Perspect. Biol, 2, a001446.

Pigliucci, M. (2003). Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecology Letters, 6, 265-72.

Pigliucci, M., Murren, C. J. and Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. J. Ex.p Biol., 209, 2362-2367.

Piñeyro-Nelson, A., Van Heerwaarden, J., Perales, H. R., Serratos-Hernández, J. A. Rangel, A., Hufford, M. B., Gepts, P., Garay-Arroyo, A., Rivera-Bustamante, R. and Alvarez-Buylla, E.R. (2009). Resolution of the Mexican transgene detection controversy: error sources and scientific practice in commercial and ecological contexts. Molecular Ecology, 18, 4145-4150.

Podevin, N. and Jardin, P. (2012). Possible consequences of the overlap between the CAMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants. GM crops and Food: Biotechnology and the Food Chain, 3, 296-300.

Rao, J., Yang, L., Guo, J., Quan, J., Chen, G., Zhao, X., Zhang, D., Shi, J. (2016). Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2. Plant Cell Rep, 35, 429-437.

Reiß, C., Olsson, L. and Hoßfeld, U. (2015). The history of the oldest self‐sustaining laboratory animal: 150 years of axolotl research. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 324, 393-404.

Richards, E. J. (2006). Inherited epigenetic variation-revisiting soft inheritance. Nat Rev Genet 7, 395-401.

Rodriguez-Mega, E., Piñeyro-Nelson, A., Gutierrez, C., Garcia-Ponce, B., Sanchez, M. D. L. P., Zluhan-Martinez, E., Álvarez-Buylla, E.R. and Garay-Arroyo, A. (2015). Role of transcriptional regulation in the evolution of plant phenotype: A dynamic systems approach. Developmental Dynamics, 244, 1074-1095.

Rohner, N., Jarosz, D. F., Kowalko, J. E., Yoshizawa, M., Jeffery, W. R., Borowsky, R. L., and Tabin, C. J. (2013). Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science, 342, 1372-1375.

Rosas, U., Cibrian-Jaramillo, A., Ristova, D., Banta, J. A., Gifford, M. L., Fan, A. H., Zhou, R. W., Kim, G. J., Krouk, G., Birnbaum, K. D., Purugganan, M. D. and Coruzzi, G. M. (2013). Integration of responses within and across Arabidopsis natural accessions uncovers loci controlling root systems architecture. Proc Natl Acad Sci U S A, 110, 15133-15138.

Rymen, B., Coppens, F., Dhondt, S., Fiorani, F. and Beemster, G. T. (2010). Kinematic analysis of cell division and expansion. Methods Mol Biol, 655, 203-227.

Salazar-Henao, J. E., Vélez-Bermúdez, I. C., Schmidt, W., (2016). The regulation and plasticity of root hair patterning and morphogenesis. Development, 143, 1848-58.

Sanchez, M. P., Aceves-Garcia, P., Petrone, E., Steckenborn, S., Vega-Leon, R., Alvarez-Buylla, E.R., Garay-Arroyo, A., and Garcia-Ponce, B. (2015). The impact of Polycomb group (PcG) and Trithorax group (TrxG) epigenetic factors in plant plasticity. New Phytol., 208, 684-694.

Santacruz A. G., Tinoco-Cuellar O. M., Rangel-Huerta M., Maldonado E. (2015). Spatial Mapping in Perpetual Darkness: EvoDevo of Behavior in Astyanax mexicanus Cavefish. In: Keene A. C., Yoshizawa M, Mc-Gaugh S. E. Editors. Biology and evolution of the Mexican cavefish. 1st Edition, United States Elsevier p. 361–376.

Santner, A. and Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature, 459, 1071-1078.

Santner, A., Calderon-Villalobos, L.I. and Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol, 5, 301-307.

Schuettengruber, B., Martinez, A.M., Iovino, N., and Cavalli, G. (2011). Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol, 12, 799-814.

Serratos-Hernandez, J. (2009). Bioseguridad y dispersión de maíz transgénico en México. Revista Ciencias, 92-93, 130-141.

Serratos-Hernández, J. A., Gómez-Olivares, J. L., Salinas-Arreortua, N., Buendía-Rodríguez, E., Islas-Gutiérrez, F., de Ita, A. (2007). Transgenic proteins in maize in the soil conservation area of Federal District, México. Frontiers in Ecology and the Environment, 5, 247-252.

Serratos-Hernández, J.A., Castillo-González, F., Kato-Yamakake, T.Á., Gómez-Olivares, J.L., Morales Valderrama. C. (2016). Conservación de la diversidad y la cultura del maíz nativo en el suelo de conservación. En: La biodiversidad en la Ciudad de México, vol. ii conabio/sedema. México, pp. 545-556. En prensa.

Sharp, R. E. and Davies, W. J. (1979). Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta, 147, 43-49.

Shindo, C., Aranzana, M. J., Lister, C., Baxter, C., Nicholls, C., Nordborg, M. and Dean, C. (2005). Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol, 138, 1163-1173.

Shindo, C., Lister, C., Crevillen, P., Nordborg, M. and Dean, C. (2006). Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes Dev., 20, 3079-3083.

Skirycz, A., Claeys, H., De Bodt, S, Oikawa, A., Shinoda, S., Andriankaja, M., Maleux, K., Eloy, N. B., Coppens, F., Yoo, S. D., Saito, K. and Inzé, D. (2011). Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. Plant Cell, 23, 1876-88.

Song, J., Angel, A., Howard, M. and Dean, C. (2012). Vernalization - a cold-induced epigenetic switch. J Cell Sci, 125, 3723-3731.

Suneson, C. A. (1956). An evolutionary plant breeding method. Agronomy Journal, 48, 188-191.

Tapia-López, R., García-Ponce, B., Dubrovsky, J. G., Garay-Arroyo, A., Pérez-Ruíz, R. V., Kim, S. H., Acevedo, F., Pelaz, S. and Alvarez-Buylla, E. R. (2008). An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis thaliana. Plant Physiol, 146, 1182-1192.

Telfer, A., Bollman, K. M. and Poethig, R. S. (1997). Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development, 124, 645-654.

Torres-Sosa, C., Huang, S. and Aldana, M. (2012). Criticality is an emergent property of genetic networks that exhibit evolvability. PLoS Comput Biol., 8, e1002669.

Van Haperen, G. B. and Jacobs, J. (2012). Reconstruction of the Ethical debate oon naturalness in discussions about plant biotechnology. J Agric Environ Ethics, 25, 797-812.

Vázquez‐Lobo, A.; Carlsbecker, A.; Vergara‐Silva, A.; Alvarez‐Buylla, R.E.; Piñero, D.; and Engström, P. (2007). Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo‐devo hypotheses for gymnosperms. Evolution and Development. 9:446-459.

Veenendaal, M. V. E., Painter, R. C., De Rooij, S. R., Bossuyt, P. M. M., Van Der Post, J. A. M., Gluckman, P. D. and Roseboom, T. J. (2013). Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. BJOG: An International Journal of Obstetrics and Gynaecology, 120, 548–553.

Vergara-Silva, F. (2003). Plants and the conceptual articulation of evolutionary developmental biology. Biology and Philosophy. 18: 249-284.

Vergara-Silva, F.; Martinez-Castilla, L. and Alvarez-Buylla, E. R. (2000). MADS-box genes: Development and evolution of plant body plans. Journal of Phycology. 36 (5), 803-812.

Vergara‐Silva, F.; Espinosa‐Matías, S.; Ambrose, B. A.; Vázquez‐Santana, S.; Martínez‐Mena, A.; Márquez‐Guzmán, J.; Martínez, E.; Meyerowitz, E.M.; Álvarez‐Buylla E.R. (2003). Inside‐Out Flowers Characteristic of Lacandonia schismatica Evolved at Least before Its Divergence from a Closely Related Taxon, Triuris brevistylis. International Journal of Plant Sciences. 164: 345-357.

Veselov, D. S., Mustafina, A. R., Sabirjanova, I. B., Akhiyarova, G. R., Dedov, A. V., Veselov, S. U., Kudoyarova, G. R. (2002). Effect of PEG-treatment on the leaf growth response and auxin content in shoots of wheat seedlings. Plant Growth Regul, 38, 191–194.

Vidal, N., barbosa, H., Jacob, S. and Arruda, M. (2015). Comparative study of transgenic and non-transgenic maize (Zea mays) flours commercialized in Brazil, focussing on proteomic analyses. Food Chemistry 180, 288-294.

Villarreal, C., Padilla-Longoria, P. and Alvarez-Buylla, E. R. (2012). General theory of genotype to phenotype mapping: Derivation of epigenetic landscapes from n-node complex gene regulatory networks. Physical Review Letters, 109(11).

Vieten, A., Vanneste, S., Wisniewska, J., Benková, E., Benjamins, R., Beeckman, T., Luschnig, C. and Friml, J. (2005). Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development, 132, 4521-31.

Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563-565.

Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 118-126.

Waddington, C. H. (1957). The Strategy of Genes. London: George Allen y Unwin, Ltd.

Wang, R., Farrona, S., Vincent, C., Joecker, A., Schoof, H., Turcki, F., Alonso-Blanco, C., Coupland, G. and Albani, M. C. (2009). PEP1 regulates perennial flowering in Arabis alpina. Nature, 459, 423-427.

Webber, B., Raghu, S., Edwards, O. (2015). is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat?. PNAS, 112, 10565-10567.

Wegier, A., Piñeyro-Nelson, A, Alarcón, J, Gálvez-Mariscal, A, Alvarez-Buylla, E. R. and Piñero, D. (2011). Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin. Mol Ecol, 20, 4182-4194.

West, G., Inzé, D. and Beemster, G. T. (2004). Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol, 135, 1050-8.

Wilkins, A. S. (2008). Waddington’s unfinished critique of neo-Darwinian genetics: then and now. Biological Theory, 3, 224-232.

Wolpert, L., Tickle, C., and Martinez Arias, A. (2015). Principles of Development. Oxford University Press. 652pp.

Wolters, H. and Jürgens, G. (2009). Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet, 10, 305-17.

Woodward, A. W. and Bartel, B. (2005). Auxin: regulation, action, and interaction. Ann Bot, 95, 707-35.

World Health Organization. (2014). Global Status Report on Noncommunicable Diseases 2014. World Health Organization. http://doi.org/ISBN 9789241564854.

Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97-159.

Xia, Y., Yu, K., Navarre, D., Seebold, K., Kachroo, A. and Kachroo, P. (2012). The glabra1 mutation affects cuticle formation and plant responses to microbes. Plant Physiol, 154, 833-846.

Yockteng, R., Almeida, A. M. R., Morioka, K., Alvarez-Buylla, E. R. and Specht, C. D. (2013). Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the zingiberales: A proposed mechanism for floral diversification. Molecular Biology and Evolution, 30, 2401-2422.

Descargas

Publicado

2017-12-23

Número

Sección

Suplemento: La Ecología en México: retos y perspectivas