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Reptiles have evolved different mechanisms for sex-
determination. In several species, sex is determined by 
heteromorphic sex chromosome recombination, a process 
known as genetic sex determination (GSD). In contrast, 
temperature-dependent sex determination (TSD), where 
sex is determined by thermal conditions experienced in 
the lability period during gonadal development, is present 
in most reptile lineages (many turtles, all sphenodontians, 
a few lizards and all crocodilians studied) (Bull, 1980; 
Pieau, 1996). Thus, TSD is a case of phenotypic plasticity 
where environmental conditions during reproduction 
represent a powerful driver of population dynamics. TSD 

has thus provided an interesting model to understand the 
interplay between sex ratio selection, sex determination 
and environmental factors, and thereby the evolutionary 
significance of phenotypic plasticity (Bull, 1980; Janzen, 
1994; Van Dooren and Leimar, 2003; Warner and Shine, 
2008).

Recently, the ecological and evolutionary impacts 
of environmental changes on TSD species have aroused 
considerable interest (e.g., Janzen, 1994; Hulin et al., 
2009; Mitchell and Janzen, 2010). This interest lies in 
the hypothesis that TSD species may have an adaptive 
disadvantage in light of current environmental changes, 
leading to skewed sex ratios and potentially an increased 
risk of local population extirpations. Yet, recent TSD studies 
suggest that the interplay between sex determination and 
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Abstract. Recently, scientific attention has increased around the ecological and evolutionary effects of climate change 
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Resumen. Recientemente, la atención de los científicos ha aumentado en relación a las consecuencias ecológicas y 
evolutivas del cambio climático sobre las especies con determinación sexual por temperatura. Posiblemente el efecto 
más significativo del cambio climático sobre las especies sexo dependientes de temperatura sea el desequilibrio en la 
proporción de sexos y por consiguiente poner en riesgo su viabilidad poblacional. Estudios recientes, en condiciones de 
laboratorio, sugieren que los diferentes patrones de determinación sexual por temperatura pueden invertir la proporción 
de sexos en respuesta a las variaciones ambientales, poniendo en entredicho la percepción actual de la interacción 
entre determinación sexual por temperatura y cambio climático. En esta nota, se presenta un breve resumen de los 
estudios previos y nuevos sobre las implicaciones ecológicas en especies con determinación sexual por temperatura 
ante los cambios ambientales.
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environment are more complex than has been previously 
envisioned. These observations have challenged the current 
perception of potential consequences of environmental 
changes on TSD species. Here, I discuss some of these 
new insights regarding TSD species’ responses to climatic 
changes, and the associated ecological implications.

The role of incubation temperature on sex determination 
was first reported over 46 years ago in the African agamid 
lizard Agama agama by Charnier (1966). Since then, 
studies mainly in laboratory conditions in the context 
of TSD mechanism in reptiles continue to accumulate. 
The molecular basis to explain sex differentiation remain 
rather complex, due to variety among species, some gene 
regulatory networks in GSD species are also found in 
TSD species, therefore the form to regulate the gene 
expression and hormonal precursors depends on genetic 
or environmental factors (reviewed in Lance, 2009; 
Merchant-Larios and Díaz-Hernández, 2013).

TSD pattern are characterized by showing a pivotal 
temperature (i.e., temperature which produces a balanced 
sex ratio at constant incubation temperature) and a 
transitional range of temperature (i.e., the range of 
temperatures that yield both sexes in variable proportions). 
Based on available information from the laboratory studies 
at constant temperature, simple experiments suggest that 
mean temperature variations above or below one of the 
pivotal temperatures during the lability period would 
drastically alter the offspring sex ratio (e.g., Glen and 
Mrosovsky, 2004; Hawkes et al. 2007; Katselidis et 
al., 2012; Patiño-Martínez et al., 2012), which, in turn, 
would have important ecological implications for field 
studies.

Recently, Neuwald and Valenzuela (2011) and Warner 
and Shine (2011) showed under controlled conditions 
that offspring sex-determination can be reversed under 
increasing thermal fluctuation. Both studies used laboratory 
incubation regimes that mimic thermal fluctuations within 
natural nests. Neuwald and Valenzuela (2011) observed for 
the painted turtle Chrysemys picta (TSD pattern Ia; Bull 
and Vogt, 1979), that eggs incubated at male-promoting 
temperature with low thermal variation (26 ± 3° C) showed 
the expected sex ratio as if they were incubated at constant 
temperature; while eggs incubated at the same temperature 
but with higher thermal variation (26 ± 5° C) produced 
a female-biased sex ratio. The opposite occurred when 
eggs were exposed at female-promoting temperature with 
low (31 ± 3° C) and high (31 ± 5° C) thermal variation: 
the expected sex ratio resulted in the former and male-
biased offspring in the later. In the other study, Warner and 
Shine (2011) experimented with the TSD II jacky dragon 
Amphibolurus muricatus, in which females are produced 
at low (≤ 26° C) and high (≥ 30° C) temperatures, and 

males at intermediate temperatures (26-30° C) (Harlow 
and Taylor, 2000). Warner and Shine (2011) observed 
that constant female-promoting temperature (25° C) 
produced a female-biased sex ratio, but when increasing 
thermal variation (low: 25 ± 4° C and high: 25 ± 8° C) sex 
ratio approached a balanced proportion. When eggs were 
exposed to an intermediate temperature (28° C) a balanced 
sex ratio was produced, but when thermal variation was 
increased (low: 28 ± 4° C and high: 28 ± 8° C), sex ratio 
was female-biased. On the other hand, Inamdar et al. (2012) 
studying the Indian oviparous lizard Calotes versicolor 
observed that eggs incubated at 23.5 ± 0.5° C and 31.5 
± 0.5° C produced females, while males were produced 
at 25.5 ± 0.5° C and 31.4 ± 0.5° C, suggesting that C. 
versicolor shows 3 threshold temperatures that produce 
balanced proportions. In a recent study, a similar pattern 
(3 threshold temperatures) was observed in the oviparous 
desert lizard Crotaphytus collaris (Santoyo-Brito et al., 
2012); therefore the female-male-female-male pattern may 
be more common than was previously thought.

Future climate projections indicate a rise of the mean 
global temperature at least during the current century, 
but offer little information regarding changes in thermal 
fluctuations. This limits our ability to foresee the potential 
effects of climate change on TSD species under natural 
conditions. Yet, new insights suggest that different 
TSD species could shift sex ratio in response to thermal 
fluctuations, specifically reversing the sex ratio or balance 
sex ratios in TSD species. Also, these observations shed 
new light on the adaptive significance of TSD strategies 
to maintaining sex ratios in the face of environmental 
changes (Neuwald and Valenzuela, 2011; Warner and 
Shine, 2011; Inamdar et al., 2012), thus current climate 
change may not necessarily result in skewed sex ratios for 
most TSD species. However, this suggestion is not entirely 
new. In the early 1980’s, Bull and Vogt (1981) and Bull 
(1985) observed that offspring sex ratio is the outcome 
between daily thermal fluctuation and daily proportion of 
time in which gonadal development spent above threshold 
temperature. Thereafter, Georges et al. (1994) proposed, 
19 years ago, that threshold temperature established in 
laboratory conditions at constant temperature is poorly 
relevant to natural conditions wherein the nest temperature 
fluctuate daily. Yet, unfortunately, some laboratory and 
field studies that evaluate the potential effect of climactic 
variations on sex ratio in TSD species in the context 
of climate change have ignored previous work wherein 
mean temperature in the natural nest failed to explain 
hatchling sex ratio. In addition, we still know surprisingly 
little about the role of heat shock proteins (HSPs) during 
thermo-sensitive period of sex differentiation (Harry et 
al., 1990; Kohno et al., 2010), which may be the key to 
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understanding the physiological mechanisms of adjustment 
to environmental changes.

In sum, based on the previous and new insights, 
considering only the mean incubation temperature as the 
thermal parameter to predict the resulting sex ratio in 
natural conditions and the consequences of climate change 
on TSD species could lead to erroneous conclusions, 
and misleading conservation strategies for TSD species. 
Therefore, there are many missing pieces that need to be 
in place before it will be possible to predict the effects 
of climate change on TSD species. Future work should 
address questions regarding how temperature fluctuations 
influence sex determination under natural conditions 
and how environmental changes affect offspring fitness. 
This information will help provide a broader and more 
precise view about the consequences of contemporary 
environmental variations, and the responsiveness of TSD 
species to these changes.
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