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Abstract. We review Hennigian phylogenetics and compare it with Maximum parsimony, Maximum likelihood, and 
Bayesian likelihood approaches. All methods use the principle of parsimony in some form. Hennigian-based approaches 
are justifi ed ontologically by the Darwinian concepts of phylogenetic conservatism and cohesion of homologies, embodied 
in Hennig’s Auxiliary Principle, and applied by outgroup comparisons. Parsimony is used as an epistemological tool, 
applied a posteriori to choose the most robust hypothesis when there are confl icting data. Quantitative methods use 
parsimony as an ontological criterion: Maximum parsimony analysis uses unweighted parsimony, Maximum likelihood 
weight all characters equally that explain the data, and Bayesian likelihood relying on weighting each character partition 
that explains the data. Different results most often stem from insuffi cient data, in which case each quantitative method 
treats ambiguities differently. All quantitative methods produce networks. The networks can be converted into trees by 
rooting them. If the rooting is done in accordance with Hennig’s Auxiliary Principle, using outgroup comparisons, the 
resulting tree can then be interpreted as a phylogenetic hypothesis. As the size of the data set increases, likelihood methods 
select models that allow an increasingly greater number of a priori possibilities, converging on the Hennigian perspective 
that nothing is prohibited a priori. Thus, all methods produce similar results, regardless of data type, especially when their 
networks are rooted using outgroups. Appeals to Popperian philosophy cannot justify any kind of phylogenetic analysis, 
because they argue from effect to cause rather than from cause to effect. Nor can particular methods be justifi ed on the 
basis of statistical consistency, because all may be consistent or inconsistent depending on the data. If analyses using 
different types of data and/or different methods of phylogeny reconstruction do not produce the same results, more data 
are needed.  

Key words: phylogenetics, quantitative phylogenetics, maximum likelihood, parsimony, Bayesian likelihood, Hennig, 
information theory, data congruence.

Resumen. Se revisa la sistemática fi logenética Hennigiana y se compara con las aproximaciones de Máxima Parsimonia, 
Máxima Verosimilitud y verosimilitud Bayesiana. Todos los métodos utilizan el principio de la parsimonia en alguna 
forma. Las aproximaciones con bases Hennigianas se justifi can ontológicamente con los conceptos Darwinianos de 
conservacionismo fi logenético y cohesión de las homologías, representados en el Principio Auxiliar de Hennig, y aplicado 
en la comparación con el grupo externo. La Parsimonia se utiliza como una herramienta epistemológica, aplicada a 
posteriori en la elección de la hipótesis más robusta cuando hay datos en confl icto. Los métodos cuantitativos utilizan la 
parsimonia como un criterio ontológico: los análisis de Máxima Parismonia utilizan la parsimonia sin pesaje, la Máxima 
Verosimilitud les asigna un peso igual a todos los caracteres que explican los datos, mientras que la verosimilitud 
Bayesiana depende del pesaje de cada una de las particiones de caracteres que explican los datos. Las diferencias en los 
resultados derivan de un muestreo insufi ciente de datos, en cuyo caso cada método trata las ambigüedades de manera 
diferente. Todos los métodos cuantitativos producen redes. Las redes pueden convertirse en árboles al ser enraizadas. Si el 
enraizamiento se efectua de acuerdo con el Principio Auxiliar de Hennig, utilizando la comparación con un grupo externo, 

Revista Mexicana de Biodiversidad 78: 225- 252, 2007
http://dx.doi.org/10.22201/ib.20078706e.2007.002.422

Recibido: 05 mayo 2006; aceptado: 15 febrero 2007



                                                                                Brooks et al.-Quantitative Phylogenetic Analysis226

el árbol resultante puede considerarse como una hipótesis fi logenética. Al incrementarse el número de datos, los métodos 
de verosimilitud selccionan modelos que permiten un número cada vez mayor de posibilidades a priori, convergiendo 
en la perspectiva Hennigiana de que nada está prohibido a priori. Por lo tanto, todos los métodos producen resultados 
similares independientemente del tipo de datos, especialmente cuando las redes se enraizan utilizando grupos externos. 
Las invocaciones a la fi losofi a Popperiana no pueden justifi car ningún tipo de análisis fi logenético, ya que sus argumentos 
van del efecto a la causa y no de la causa al efecto. Tampoco se puede justifi car el uso de un método en particular con 
base en la consistencia estadística, ya que todos pueden ser consistentes o incosistentes dependiendo de los datos. Si los 
análisis con diferentes tipos de datos y/o métodos de reconstrucción fi logenética no producen igual resultado, signifi ca 
que es necesario reunir datos adicionales.

Palabras clave: fi logenia, fi logenia cuantitativa, máxima verosimilitud, parsimonia, verosimilitud bayesiana, Hennig, 
teoría de la información, congruencia de datos.

Introduction

Phylogenetic analysis has become an essential element 
unifying a broad range of research programs investigating 
the patterns and processes of evolution. The diversity of 
perspectives inherent in the traditions which researchers 
represent, however, has led to a multitude of quantitative 
methods for phylogeny reconstruction, the effi ciency and 
validity of which are fi ercely debated. That debate may 
stem largely from the nature of phylogeny reconstruction. 
Unlike the physical and chemical sciences, in which 
explanations aim to be predictive with respect to spatio-
temporally invariant laws, phylogenetic analysis deals 
with a singular history of events, many of which involve a 
degree of contingency.

We believe the fi erceness of the debate about 
quantitative methods for phylogeny reconstruction 
obscures an essential point – there is considerably more 
agreement than disagreement in results produced by those 
methods. Our intention in this review is to show how such 
convergence of outcome could arise from such seeming 
divergence of methodologies and philosophies. 

A Precis of Hennigian Phylogenetics 
The primacy of homology

As Darwin suggested it should be, phylogenetic 
analysis is about analyzing characters, fi nding homologies 
and basing classifi cations (phylogenetic hypotheses) on 
them. 

[w]e are forced to trace community of descent 
by resemblances of any kind…we choose 
those characters which are least likely to have 
been modifi ed, in relation to the conditions of 
life… 
Rudimentary structures on this view are 
as good as, or even better than, other parts 
of organization… let it be the infl ection of 
the angle of the jaw, the manner in which 

an insect’s wing is folded… if it prevail 
throughout many and different species… 
it assumes high value… for we can account 
for its presence in so many forms with such 
different habits, only by inheritance from a 
common parent. (Darwin 1872: 403)
Almost all systematists agree that to be phylogenetically 

useful, a character must possess certain properties, the 
most fundamental of which is that it is inherited. Many 
systematists consider a phylogenetic character to be 
any inherited attribute (e.g., Colless 1985). Recently, 
Grandcolas et al. (2001) argued this point cogently. They 
suggested that because we assume homologies exist a priori, 
but we cannot know with certainty whether a particular 
complex of traits are homologues, we cannot exclude any 
kind of attribute, from the simplest of nucleotides to the 
most complex of behaviors, for any reason other than non-
inheritance.

Characters must also exhibit varying degrees of 
evolutionary conservatism, such that some characters 
will indicate ancient phylogenetic relationships and others, 
more recent ones. Some traits may, in fact, be homologous 
despite appearing to be quite different, because they are 
causally related. The older, ancestral, or plesiomorphic 
(Hennig 1950), character arose in an older period of 
evolutionary history than the younger, descendant, or 
apomorphic (Hennig 1950) character and together, the 
two form a transformation series (Hennig 1966). Whereas 
Hennig (1966) used the term “character” to mean a discrete 
stage – a singular heritable unit – in a transformation series, 
contemporary workers often use the term “character-
state” in lieu of Hennig’s “character” and “character” for 
Hennig’s “transformation-series” (Wagner 2001; Brooks 
and McLennan 2002; Richards 2002, 2003; but see Grant 
and Kluge 2004 for objections to this terminology).

“Homologous parts tend to vary in the same 
manner, and homologous parts tend to 
cohere” (Darwin 1872:158)
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If we are to use “co-variation and coherence” among 
characters as evidence of phylogeny, we must assume 
that what we call different characters are not merely 
repetitions of the same thing. They must exhibit some 
degree of independence, i.e., they are potentially capable 
of evolving at different rates and to different degrees in 
different lineages in different times and places. Some 
phylogeneticists suggest that because homologous 
traits are, in a sense, non-independent with respect to 
phylogeny, we cannot distinguish non-independence a 
priori. Character selection is guided by Kluge’s Auxiliary 
Principle (Brooks and McLennan 2002): “always presume 
character independence in the absence of evidence to the 
contrary”.

The fact that different organisms share similar features 
was noted long before any scientifi c theory of evolution 
was codifi ed.  One of the fi rst attempts to codify the 
manner in which characters are shared amongst organisms 
was by Richard Owen, who coined the term homology in 
1843. Owen’s (1843) defi nition was structural: “the same 
organ in different animals under every variety of form 
and function”. He contrasted this with analogy, defi ned 
as “a part or organ in one animal which has the same 
function as another part or organ in a different animal”. 
This specifi cation of homology as sameness in structure 
rather than function had signifi cant impact on evolutionary 
thought, so that not until one hundred years later was it 
stated that behaviours could be considered homologues 
(Hubbs 1944).

Owen (1847) later expanded his defi nition of 
homology, splitting it into three types. Special homology 
was the correspondence of a part in one animal with a part 
in a different animal, for example, the foreleg of a lizard 
and that of a mouse. General homology was “a higher 
relation of homology”, “that in which a part or series of 
parts stands to the fundamental or general type”; consider 
as an example one of the vertebrae of a shrew and one of 
the vertebrae of a whale, which are generally homologous 
as vertebrae. Serial homology was defi ned as the serial 
repetition of segments, such as the foreleg and the hind leg 
of a salamander.

The Darwinian revolution easily assimilated special 
homology; the sharing of traits among species because they 
were inherited from a common ancestor is a simpler concept 
to understand than similarity based on correspondence 
to an ideal type. The function of classifi cations thus 
became describing the phylogeny of life. Producing such 
classifi cations seemed straightforward – document enough 
homologies and you will have documented phylogeny. 
Owens’ special homologies were indicators of phylogeny 
and provided an evolutionary criterion for classifying 
species. Initial attempts to implement this “Darwinian 

Imperative” were problematical because they were 
tautological;  the similarity of characters in different taxa 
was a result of the common ancestry of those taxa, but this 
common ancestry could only be recognized by means of 
the similarities. In other words, homologous characters 
were both defi ned by, and used to delineate, evolutionary 
relationships.

Henry Fairfi eld Osborn was among the fi rst to stress 
the primacy of the historical aspect of homology, stating 
that the only decisive test of homology was historic 
community of derivation (Osborn 1902). Likewise, some 
founders of the New Synthesis supported the primacy of 
the historical concept of homology when they accepted 
Owens’ special homology category, but questioned 
whether general and serial homologies have any 
applicability in the realm of phylogeny (Haas and Simpson 
1946). Other neo-Darwinians, however, expressed support 
for pre-Darwinian homology concepts. Boyden (1947) 
objected to homology being defi ned as similarity due 
to common ancestry, claiming that we could not know 
ancestry independently of the analysis of presumptive 
homologies. This resurrected ahistorical approach for 
determining homology was codifi ed by Remane (1956, 
1961). The entry of molecular biology into evolutionary 
studies and systematics in the 1960s all but ignored the 
common descent criterion in defi nitions of homology; for 
example, Neurath et al. (1967) defi ned homology among 
proteins simply as a degree of structural similarity greater 
than might be expected by chance alone.

Echoing Darwin’s (1872) assertion that homologies 
tend to vary in the same manner, to cohere, the evolutionary 
homology criterion  (e.g., Wiley 1981; Patterson 1982, 1988; 
Roth 1984, 1988, 1991, 1994; Gould 1986; Rieppel 1992; 
McKitrick 1994) assumes that homologous traits covary 
with phylogeny, and also that non-homologous traits co-
vary only under special circumstances. The proposal of this 
criterion marked the path to integrating both the special and 
the structural homology criteria, implying that phylogeny 
reconstruction could be undertaken by examining large 
numbers of characters, seeking to distinguish those that 
“varied in the same manner and cohered” from those that 
did not.

Wiley (1981) proposed a two-part protocol for 
implementing the evolutionary homology criterion. 
He reasoned that the relationships among species are 
not self-evident, but must be discovered by fi nding 
characters that are shared among species on the basis 
of common ancestry. In order to do this, we must fi rst 
have protocols for identifying similarities that will serve 
as candidate markers of phylogeny. Such protocols can 
be considered the discovery criteria for homology. For 
this task, Wiley suggested using ahistorical criteria, 
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such as Remane’s, to pinpoint similar traits that we then 
hypothesize to be homologous. Not all similarity is due 
to common ancestry, however, so the phylogenetic signal 
in the putative homologies discovered using ahistorical 
protocols must be assessed by constructing a phylogeny 
using many characters, and checking to see which ones are 
logically consistent with the relationships expressed in the 
phylogenetic tree. In this way, phylogenetic congruence 
among characters is the evaluation criterion for homology. 
Wiley (1981) suggested that this integration of discovery 
and evaluation of homologies represented an example of 
reciprocal illumination (Hennig 1966). Patterson (1988), 
in a comprehensive overview of defi nitions of homology, 
codifi ed Wiley’s approach. He listed three separate 
criteria for assessing homology: congruence (shared 
history), conjunction (two different character states cannot 
be homologues if they are found together in the same 
organism), and similarity. He concluded that all three 
criteria must be satisfi ed for a homology to be real.

Despite its generality, there is a drawback to the 
evolutionary homology criterion. If the only way to 
determine mistaken presumptions of homology is via 
the discovery that some potential homologues are 
not congruent with other characters, the evolutionary 
homology criterion is relatively weak. Changes in our 
estimates of phylogeny, resulting from additional data, may 
change previous interpretations of homologous and non-
homologous characters. Despite this limitation, however, 
most phylogeneticists agree that avoiding circularity is 
paramount, justifying reliance on the relatively weak 
evolutionary homology criterion. 
The Auxiliary Principle

The most important concept introduced by Hennig 
was the stipulation that we should assume homology in the 
absence of contradictory evidence, now known as Hennig’s 
Auxiliary Principle. The idea that similarity in traits even 
among distantly related species was due to homology 
(i.e., plesiomorphy) rather than independent evolution 
(homoplasy) was, however, established long before the 
development of Hennigian systematics

…it would in most cases be extremely 
rash to attribute to convergence a close and 
general similarity of structure in the modifi ed 
descendants of widely distinct forms. The 
shape of a crystal is determined solely by 
the molecular forces and it is not surprising 
that dissimilar substances should sometimes 
assume the same form; but with organic 
beings we should bear in mind that the form 
of each depends on an infi nitude of complex 
relations, namely on the variations that have 
arisen, these being due to causes far too 

intricate to be followed out, --on the nature 
of the variations that have been preserved or 
selected, and this depends on the surrounding 
physical conditions, and in a still higher degree 
on the surrounding organisms with which 
each being has come into competition, --and 
lastly, on inheritance (in itself a fl uctuating 
element) from innumerable progenitors, all 
of which had their forms determined through 
equally complex relations. It is incredible that 
the descendants of two organisms, which had 
originally differed in a marked manner, should 
ever afterwards converge so closely as to lead 
to a near approach to identity throughout their 
whole organisation. If this had occurred, we 
should meet with the same form, independent 
of genetic connection, recurring in widely 
separated geological formations; and the 
balance of evidence is opposed to any such 
admission. (Darwin 1872: 127-128).
  

Making the Auxiliary Principle Operational: Outgroup 
Comparisons

“Mr. Waterhouse has remarked that, when a 
member belonging to one group of animals 
exhibits an affi nity to a quite distinct group, 
this affi nity in most cases is general and not 
special.” (Darwin 1872: 409)
This statement indicates how comparisons of similar 

traits found in members of a group being studied (the 
“ingroup”) and species outside that group (“outgroups”) 
could be used to implement what we now call Hennig’s 
Auxiliary Principle. By referring to a colleague, this 
passage also indicates that at least some systematists 
during Darwin’s day used a form of this concept in their 
work. Ironically, there was no codifi cation of what we now 
call outgroup comparison until more than a century after 
Darwin wrote the above passage. Engelmann and Wiley 
(1977) provided the rationale for outgroups in phylogenetic 
reconstruction, demonstrating how the same data are 
differentially treated in what they called “closed” versus 
“open” systems. Engelmann and Wiley pointed out that 
reference to species outside the ingroup (their open systems 
approach) permits a researcher to distinguish between 
traits that truly confl ict with phylogeny (homoplasies), 
from those that only appear to confl ict (plesiomorphies).

The application of outgroup analysis to real datasets 
proved problematical in early studies because even 
by those who claimed to use the method never treated 
outgroups explicitly.(Colless 1967). Stevens (1980) 
voiced the frustration of the day, stating that although 
phylogenetic systematists claimed their assumptions and 
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procedures were explicit, there was in fact little discussion 
of the crucial early step, namely assignment of character 
state polarity. Watrous and Wheeler (1981) were the fi rst 
to suggest operational rules for outgroup comparison.

Farris (1982) objected to some of Watrous and 
Wheeler’s general rules, arguing that they failed to 
recognize that direct application of parsimony both 
explained their rules and overcame all putative limitations 
in the application of outgroup analysis. This was one of the 
fi rst instances in which ontological and epistemological 
parsimony were confl ated by systematic theorists. We 
believe that the published exchange of opinions about 
the function, signifi cance, and relevance of outgroup 
comparisons is the clearest manifestation of a lack of 
clarity between epistemological and ontological uses of 
parsimony in phylogeny reconstruction. 

The Auxiliary Principle and the Principle of Parsimony
The principle of parsimony (Latin parcere, to spare), 

also known as the principle of simplicity, is often connected 
with the English philosopher and Franciscan monk William 
of Ockham (ca. 1285-1349), who advocated the use of the 
principle so forcefully that it is also known as ‘Ockham’s 
razor’: “Pluralitas non est ponenda sine neccesitate” 
(“plurality should not be posited without necessity”) 
and “non sunt multiplicanda entia praeter necessitatem” 
(“entities should not be multiplied unnecessarily”). In this 
sense, the principle represents an epistemological tool 
that obliges us to favor theories or hypotheses making 
the fewest unwarranted, or ad hoc, assumptions about the 
data. This does not necessarily imply that nature itself 
is parsimonious, or that most parsimonious theories 
are true. Aristotle (350 B.C.E.) articulated a different 
view of the principle of parsimony, that “nature operates 
in the shortest way possible” and “the more limited, if 
adequate, is always preferable” (Charlesworth 1956). 
This postulates that nature itself is parsimonious, using 
the principle in an ontological rather than epistemological 
manner. Phylogeneticists have used the term “parsimony” 
in both senses, resulting, in our estimation, unnecessary 
confusion and confl ict.

Hennig clearly intended to maximize hypotheses 
of homology and minimize hypotheses of homoplasy, 
which invokes the principle of parsimony by avoiding 
the assumption of unnecessary ad hoc hypotheses of 
parallelism. In the Hennigian system, if evolution (or 
nature) were parsimonious as Aristotle suggested, all traits 
would be logically consistent with the true phylogeny 
– there would be no confl icting relationships suggested 
by any set of traits, that is, there would be no homoplasy. 
The Auxiliary Principle implies that there will often be 
confl icts in the data, which should be resolved in favor 

of the hypothesis postulating the fewest number of 
assumptions of multiple origins (homoplasy) over single 
origins (homology).  

Contemporary Hennigians assert that both the Auxiliary 
Principle and the use of parsimony are logical requirements 
of any attempt to reconstruct phylogeny; if one were to 
assert that all similarities were due to homoplasy, there 
would be no evidence of common descent, and thus 
no evidence of evolution. Likewise, if one is going to 
invoke the Auxiliary Principle, one must invoke it for all 
traits, thereby choosing the phylogenetic hypothesis that 
minimizes the total number of violations of the Auxiliary 
Principle for a given set of data. Wiley (1981) suggested 
four main assumptions of phylogenetics: (1) evolution 
has occurred, documented by the characters of different 
species; (2) each species is a historically unique mosaic of 
plesiomorphic, synapomorphic, and autapomorphic traits; 
(3) we do not have foreknowledge about which characters 
are homologous and homoplasious; and (4) we do not have 
foreknowledge of the phylogenetic relationships, or of the 
relative or absolute rates of divergence. The presumption 
of homology in Hennig’s Auxiliary Principle assumes only 
that evolution is conservative, not parsimonious, and we 
have good empirical reasons to believe that presumption, 
most notably that replication rates are higher than mutation 
rates.

As noted above, the Auxiliary Principle is an 
ontological criterion, suggesting that evolution has been 
conservative, not necessarily parsimonious. Outgroup 
comparison is thus an operational tool used to satisfy 
the Auxiliary Principle with respect to distinguishing 
plesiomorphies from apomorphies. If there is no confl ict 
among the apomorphies, there is only a single phylogenetic 
hypothesis supported by the data – there would be no 
“most parsimonious” tree, only “the” tree. When outgroup 
comparison does not resolve all confl icts in the data, 
phylogenetic analysis requires an epistemological tool to 
make a contingent decision about the preferred hypothesis 
based on empirical robustness. This tool is the principle of 
parsimony. The extent to which we need to implement the 
principle of parsimony depends on many factors (Brooks 
1996), but even a cursory survey of published studies 
shows that no type of data is free of homoplasy.

The fi rst algorithm to determine ingroup relationships 
with reference to multiple outgroups was presented by 
Maddison et al. (1984), who showed that the most robust 
outgroup comparison relied on two or more paraphyletic 
outgroups. They proposed a two-step procedure that fi rst 
assesses character states “locally” among a number of 
outgroups; when there is ambiguity, parsimony is used to 
make a decision about the preferred plesiomorphic state. 
These ancestral states are used in performing Hennigian 
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analysis, or for rooting a network. This produces 
phylogenetic trees that are most parsimonious “globally”, 
i.e. most parsimonious in the context of related groups, 
in the same sense that Engelman and Wiley (1977) 
proposed. 

Quantitative Approaches
The development of quantitative methods for 

phylogeny reconstruction parallels the emergence and 
development of Hennigian phylogenetic systematics 
during the 1960s. Three major classes of quantitative 
methods differ philosophically from Hennigian principles 
by invoking some form of parsimony as an ontological, 
rather than epistemological criterion. 

Maximum Parsimony
In September 1965, two seminal articles on phylogeny 

and parsimony appeared. Wilson (1965) introduced a 
“consistency test for phylogenies based on contemporaneous 
species.” His null hypothesis was that all characters are 
unique and unreversed. In order to pass the consistency 
test, the taxa defi ned by these characters must be nested 
and these conditions must persist as new species are added 
to the analysis. Colless (1966) was concerned that more 
than one phylogenetic tree might pass the consistency test, 
that a character might mistakenly be regarded as unique 
and unreversed, and that the taxa are, in the fi rst place, 
grouped solely on the basis of similarities. Wilson (1967) 
asserted that his consistency test was internally sound, but 
that he shared one of Colless’ main concerns, which “is 
the lack of effi cient methods for selecting the character 
states”.

That concern was discussed in the second article, 
in which Camin and Sokal (1965) presented the fi rst 
algorithm for applying the parsimony criterion to 
phylogenetics and fi rst applied the term “parsimony” to a 
method of phylogenetic inference. They used a group of 
imaginary animals (“Caminalcules”) possessing a number 
of morphological characters that could change according 
to particular rules. Thus, the ‘true phylogenetic tree’ was 
known and could be compared to trees that were achieved 
by different methodologies. Camin and Sokal found that 
the trees that most closely resembled the “true phylogeny” 
required the least number of changes in the morphological 
characters, which seems to invoke an epistemological use 
of parsimony. They claimed that their technique examined 
“the possibility of reconstructing cladistics by the 
principle of evolutionary parsimony” (Camin and Sokal 
1965), but then qualifi ed it by stating that their approach 
assumed nature is parsimonious, an appeal to ontological 
parsimony. Camin and Sokal produced a computer 
program implementing their method, demonstrating for 

the fi rst time that quantitative phylogenetic analysis could 
be operational. Their original algorithm, however, was 
unwieldy and ineffi cient for larger data sets, and never 
effectively programmed.

Soon afterward, Kluge and Farris (1969, also Farris 
1970), presented “Wagner parsimony”, named in honor 
of W.H. Wagner (Wagner 1952, 1961, 1969), who 
formalized the groundplan divergence method (Mitchell 
1901, 1905; Tillyard 1921; Sporne 1949; Danser 1950, 
1953) on which Kluge and Farris’ algorithm was based. 
Wagner parsimony minimizes the Manhattan distance 
between members of a set of taxa via the creation of 
hypothetical taxonomic units or archetypal ancestors. One 
year later, Farris (1970) argued that it was not necessary 
to have an ancestor to begin tree construction because the 
choice of an ancestor could change the topology of the 
tree. He concluded that a rootless network would reduce 
the dependency of tree topology on a priori assumptions 
about the nature of the ancestor. To do this, he used a 
method for creating networks that minimized the length 
of the intervals between taxa (symbolized by nodes), using 
the shortest network connections (Manhattan distance) 
method of Prim (1957; Sokal and Sneath 1963). Farris’ 
method differed from previous phenetic applications by 
the use of shared, derived characters rather than characters 
connected by only “similarity”. The subsequent network  
can be converted into a phylogenetic tree by rooting it at 
one of the taxa within the tree, or at an interval within the 
network. Phylogenies constructed using this method are 
completed by optimizing the characters onto the tree. In 
the decade following Farris’ (1970) contribution, a number 
of algorithms were developed (e.g., Fitch parsimony, 
Fitch 1971); Dollo parsimony, Farris 1977), which were 
incorporated into the existing programs as alternatives to 
Wagner parsimony. These algorithms differed primarily 
in their assumptions and restrictions regarding character 
evolution, and are discussed in more detail by Wiley et al. 
(1991).

Converting a Wagner Network into a Phylogenetic Tree
Converting a Wagner network into a phylogenetic 

tree requires rooting the network in some manner. 
Increasingly, published studies convert the network into a 
tree by rooting it with an arbitrarily chosen single taxon not 
included in the group being analyzed. This protocol should 
not be mistaken for the method of outgroup comparison 
that emerged in phylogenetics during the 1970s. The 
distinction is slight, but signifi cant, and must be understood 
in light of Hennig’s perspective on the issue of ancestors. 
Hennig objected strongly to the notion that phylogeny 
reconstruction could be achieved by reconstructing a series 
of archetypal ancestors from which particular descendant 
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species could be derived. He argued that each species was 
a unique mosaic of plesiomorphic and apomorphic traits 
so archetypes, defi ned as ancestral species exhibiting only 
plesiomorphic traits, did not exist. In other words, no 
single taxon could be used as an outgroup to determine 
the plesiomorphic and apomorphic traits for any analysis. 
Given this, rooting a network with a single outgroup taxon 
would be suffi ciently robust in the Hennigian system only 
if that taxon were the archetypal ancestor of the ingroup, 
something the Hennigian system disavows.

As can be seen from the above discussion, the early 
development of the Wagner algorithm was not informed 
directly by Hennigian reasoning. Rather, it relied on 
the groundplan divergence method based on a priori 
recognition of an archetypal ancestor. When Farris (1970) 
abandoned the a priori reliance on an ancestor, the Wagner 
algorithm became a method for producing an unrooted 
network. Lundberg (1972) linked the results of Wagner 
analyses with Hennigian analyses by differentiating 
ancestors from outgroups. He proposed that the structure of 
a network might make certain character states more likely 
to be ancestral, helping to determine which interval should 
form the root of the tree of a parsimony-based network. 
The shift in emphasis from searching for ancestors to 
identifying outgroups was critical in linking Wagner with 
Hennig.

Farris explicitly proposed that parsimony, rather than 
the Auxiliary Principle, be considered the ontological 
criterion for phylogeny reconstruction. Parsimony 
analysis, however, produces a network, which can only be 
converted into a tree by rooting it. Any network has many 
possible roots, all producing equally parsimonious trees, 
so parsimony cannot serve as an ontological criterion for 
phylogenetic analysis. Using outgroup comparisons, as 
the corollary of the Auxiliary Principle, to root Wagner 
networks produces high degrees of consistency between 
Wagner algorithm, groundplan-divergence, and Hennigian 
analyses of the same data (Churchill et al., 1984), returning 
us to the Hennigian perspective that the Auxiliary 
Principle is the ontological principle, and parsimony is an 
epistemological complement to it. 

Character Weighting – Segue to Model-Based Phylogenetic 
Analysis

Not all phylogeneticists believe that robust phylogeny 
reconstruction can be achieved solely through the 
application of Hennigian principles. If the evolutionary 
homology criterion (EHC) is violated to such an extent 
that the number of co-varying homoplasies equals 
the number of homologies, Hennigian phylogenetics 
produces ambiguous results, in the form of multiple most 
parsimonious trees (MPTs). If co-varying homoplasies 

outnumber homologies, Hennigian phylogenetics produces 
an unambiguous, yet incorrect, result. An array of 
“character weighting” protocols for giving some characters 
more signifi cance than others have been formulated in an 
effort to compensate for presumptive cases in which the 
EHC is violated.

A posteriori weighting methods are alternatives to 
consensus trees and bootstrapping/ jackknifi ng for reducing 
ambiguity caused by homoplasy, testing for phylogenetic 
signal in different characters, or selecting a preferred tree 
from among multiple MPTs. The underlying assumption is 
that the researcher does not know a priori which characters 
are likely to exhibit co-varying homoplasy, but once those 
traits have been identifi ed by non-weighted phylogenetic 
analysis, their infl uence on determination of the preferred 
phylogenetic hypothesis can be minimized. Farris (1969) 
provided the fi rst numerical algorithmic approach to 
character weighting with the successive approximations 
algorithm for character weighting (SAW), developed 
from the concept of “cladistic reliability”, defi ned as the 
fi t between a character and the phylogeny (Farris 1969). 
The most parsimonious tree(s) derived by standard 
phylogenetic analysis (Farris’s ‘estimated tree’) become(s) 
the foundation for subsequent parsimony analysis. The 
consistency index (or the rescaled consistency index, the 
retention index, or the best consistency index: Quicke, 
1993) of each character is determined; when there are 
MPTs, consistency indices are averaged over the set of 
trees. Each character is then reweighted by multiplying 
it by the index value, and a new phylogenetic analysis 
performed until two successive iterations remain the same. 
While most phylogeneticists use tree topology to obtain 
initial weights, Farris (1969) suggested using a modifi ed 
compatibility technique of LeQuesne (1969) that recodes 
multi-state characters using additive binary coding to 
negate biasing. Farris tested his method by inputting 
a hypothetical phylogenetic tree (Farris’s ‘true tree’) 
with 31 nodes and 30 completely consistent characters. 
Inconsistent (homoplasious) characters were then assigned 
to nodes by a random number generator and the characters 
successively weighted. Comparing his resulting trees to 
the ‘true tree’, Farris concluded that the algorithm almost 
always improves ‘true tree’ estimates. Four types of 
functions (concave bounded, concave unbounded, linear, 
and convex) relating weight to the probability of character 
change were tested, of which the unbounded concave 
weight function was the most effective. Carpenter (1988, 
1994) expanded Farris’s rationale, stating that successive 
approximations weighting is meant to allow characters in 
a data set to judge themselves in terms of their cladistic 
reliability. The intention is to downweight less reliable 
characters.
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Various authors have criticized successive 
approximations weighting. Felsenstein (2004) pointed out 
that the successive weighting methodmakes it is diffi cult 
to detect ties. The method will not select between two 
equally parsimonious solutions and, therefore, will not 
always result in one tree. Kluge (1998a) suggested that 
independence is lost if the consistency of other characters 
determines the inconsistency of the down-weighted 
characters and that, paradoxically, character independence 
can be retained only if weights were applied arbitrarily 
(Kluge 1998a). Goloboff (1993, 1995) argued that Farris’s 
method uses pooled data to determine the fi ts of characters 
to trees and when trees are compared during a search, the 
implications of character reliability from a tree found in a 
previous analysis will affect the search. Swofford and Olsen 
(1990; also Cunningham 1997) argued that successive 
approximations weighting is circular as it always increases 
support for one or more of the trees produced by the initial 
phylogenetic analysis. Carpenter (1994) countered that 
they confused circularity with recursion, and that Farris’s 
(1969) simulation analysis showed that the fi nal tree might 
not be one of the original MPTs.

Goloboff’s (1993, 1995) implied weighting is a non-
iterative method for weighting characters according to their 
reliability. It aims to maximize the ‘total fi t’ of characters 
to a tree – among all possible trees, the tree that implies 
higher weights is assumed to be maximally reliable. 
The fi t for each character is determined independently 
from other characters and the total fi t is the sum of the 
fi ts of the individual characters. Goloboff (1993) pointed 
out that his method would not necessarily produce most 
parsimonious trees, but would produce maximally reliable 
(self consistent) trees, claiming that self consistency is a 
“necessary but not a suffi cient condition” for reconstructing 
evolutionary history.

A priori weighting methods give differential weights to 
characters prior to phylogenetic analysis. That molecular 
data should be an important source of phylogenetic 
information was recognized more than 30 years ago (e.g., 
Neyman 1971; Sokal and Sneath 1973). Today, the ease 
with which large amounts of nucleotide sequence data 
can be collected makes them very attractive. The very 
simplicity of DNA/RNA, however, results in high levels 
of “built-in” homoplasy (Brooks, 1996), and consequently, 
several a priori weighting methods have been introduced 
specifi cally to compensate for the peculiarities of nucleotide 
sequence data.

Nucleotide substitutions occur via transitions and 
transversions. Transitions are substitutions between 
pyrimidines (C – T), or between purines (A – G); they 
occur with little cost and are more common. Transversions 
are substitutions between pyrimidines and purines; they 

are costly and less likely to occur (Brown et al. 1982). This 
has led some authors to postulate that transitions are more 
likely to reach saturation and become less phylogenetically 
reliable than transversions (Broughton et al. 2000). 
Transitions are thus frequently down-weighted relative 
to transversions (Hickson et al. 1996; Milinkovitch et al. 
1996; Murphy et al. 2002). In the most extreme version, 
transversion parsimony (Swofford et al. 1996), transitions 
receive zero weight. Murphy et al. (2002) found that a tri-
fold weighting of transversions versus transitions provided 
greater resolution of rattlesnake data, but other authors 
have found transitions more useful than transversions; 
consequently, differential weighting of transitions versus 
transversions as a general procedure may be unwarranted 
(Kraus and Miyamoto 1991; Reeder 1995; Kallersjo et al. 
1998, 1999; Broughton et al. 2000; Simmons et al. 2006).

Analyses of protein coding genes may employ codon 
position weighting (Björklund 1999; Sennbald and Bremer 
2000). A protein-coding gene is structurally divided into 
codons, each composed of three base pairsencrypting 
eitheran amino acid or a stop message. The functional 
position of each base pair (1st, 2nd, and 3rd) is proportional 
to the impact it has on the amino acid for which it codes, 
which corresponds to the probability of the base pair 
changing. Second codon positions have historically been 
given greater weight in phylogenetic analyses because 
they evolve slowly. 3rd codon positions, which have less 
impact on the amino acids for which they code and thus 
are free to evolve at much higher rates , are often down-
weighted or excluded in phylogenetic analyses because 
they are less likely to have a favourable signal to noise 
ratio (Björklund 1999). Commonly, the three codon 
positions are weighted inversely to their variability (i.e., 
2nd > 1st > 3rd) (Björklund, 1999), although several studies 
have challenged the general usage of a priori differential 
weighting based on generalized assumptions of character 
state evolution (Björklund, 1999; Sennbald and Bremer, 
2000). For example, Murphy et al. (2002) found that the 
transformations in the third position were phylogenetically 
more informative compared with 1st and 2nd codon positions. 
Then Murphy (2004) demonstrated that extreme weighting 
of the 2nd position drastically changed the hypothesis of 
relationships in the data set. If this effect is general, it occurs 
because changes in the 2nd position affect the functioning 
of the encoded proteins so only those changes that produce 
functional proteins will survive and, since this is likely to 
be a small subset of all possible substitutions, the chance 
of homoplasy is increased.

When secondary structures of RNA sequences are 
analyzed as part of phylogenetic analysis, stems and 
loops are often differentially weighted (Hickson et al., 
1996). Stems, double stranded regions sustaining a 
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greater number of compensatory mutations because of 
complementary base pairing, often violate the assumption 
that a change in one nucleotide does not affect the 
probability of change in another (Dixon and Hillis, 
1993). This lack of independence has prompted some 
authors (for example, Wheeler and Honeycutt, 1988) to 
argue that stem nucleotides are not a meaningful source 
of phylogenetic information and to recommend either 
eliminating nucleotides associated with stem regions or 
down-weighting them by one-half, assuming that loop 
regions carry twice as much weight. Other authors believe 
that both stem and loop characters are phylogenetically 
informative and recommend down-weighting stem 
characters by no more than 20% relative to single-stranded 
loop characters (Dixon and Hillis, 1993). To make matters 
more complicated, loop regions can undergo frequent base 
pair substitutions because these changes have little or no 
consequence to the secondary structure. Consequently, 
loops often experience “transition saturation” resulting in 
problematical alignments. Following Hennig’s Auxiliary 
Principle, diffi culty in aligning loop regions results in 
uncertainty concerning the homologous nature of base 
pairs; thus, it is common practice to exclude these regions 
from analysis if alignment is not possible (Gatesy et al., 
1993; Leache and Reeder, 2002; Hertwig et al., 2004). In 
other words, arguments can be made to down-weight both 
loops(Tang et al., 1999) and stems. Not surprisingly then, 
Hickson et al. (1996) observed patterns of conservation and 
variability in both stem and loop regions in their analysis 
of mitochondrial sequences in small subunit rRNA and 
concluded that differential weighting these regions would 
prove unsatisfactory.

Character weighting remains a controversial topic in 
phylogenetics. Some researchers argue that all weighting 
lacks objective criteria for choosing which characters 
to weight and how much to weight them (Allard and 
Carpenter, 1996; Vidal and Lecointre, 1998; Allard 
et al., 1999). Others argue that a priori weighting of 
nucleotide sequence data inevitably discards evidence 
because general assumptions (e.g., rates of evolution) do 
not apply in every case and specifi c assumptions cannot 
be generalized (Farris, 1983; Carpenter, 1992; Wheeler, 
1992). It is also unclear how character weighting affects 
the character independence that is essential for quantitative 
phylogenetic analysis (see discussion above). 

The proliferation of multiple approaches to character 
weighting, none of which has become generally accepted, 
was not directly responsible for the emergence of model-
based methods of phylogenetic analysis.  That emergence 
was more subtle, and was based on suspicions about the 
nature of particular data that prompted thoughts about 
weighting. Those suspicions provided fertile ground for 

the growth and development of model-based methods, 
which we discuss next. 

Maximum Likelihood
A Precis of Maximum Likelihood in Phylogenetics

Edwards and Cavalli-Sforza (1963) explored the 
idea that likelihood could be applied to phylogeny 
reconstruction using blood-group allele frequency data 
in human populations (Edwards and Cavalli-Sforza, 
1964; Cavalli-Sforza and Edwards, 1967). They called 
their approach ‘Method of Minimum Evolution’, but the 
original algorithm did not work because it was based on 
the assumption that evolution has been parsimonious 
(Edwards, 1996). Neyman (1971) applied likelihood 
analysis to nucleotide sequences, and presciently suggested 
that this approach might become important in the future. 
Farris (1973) and Felsenstein (1973) published likelihood 
algorithms for phylogeny reconstruction; however, 
problems of computational diffi culties limited practical 
applications. Felsenstein (1981) introduced the fi rst 
computationally effi cient maximum likelihood algorithm 
for discrete character nucleotide sequence data. Since then, 
maximum likelihood methods have become increasingly 
popular in phylogenetic studies (Swofford et al., 1996; 
Huelsenbeck and Crandall, 1997; Tuffl ey and Steel, 1997; 
Felsenstein, 2004). These approaches are most commonly 
used in molecular phylogenetics (Swofford et al., 1996; 
Huelsenbeck and Crandall, 1997; Huelsenbeck et al., 
2002; Ronquist, 2004), but morphology-based likelihood 
methods have been proposed and are being refi ned (Lewis, 
2001; Nylander et al., 2004; Ronquist, 2004).

The idiosyncrasies of nucleotide sequence data have 
spawned several methods for inferring phylogenies 
(Goldman, 1990; Penny et al., 1992; Swofford et al., 1996; 
Huelsenbeck and Crandall, 1997; Steel and Penny, 2000). 
Maximum likelihood methods evaluate hypotheses of 
evolutionary relationships using a presumed model of the 
evolutionary process and evaluate the probability that it 
would give rise to the observed data, which are typically 
DNA sequences of the terminal taxa (Felsenstein, 1973, 
1981, 2004; Swofford et al., 1996; Huelsenbeck and 
Crandall, 1997). It should be noted that there are several 
different types of likelihood (Steel and Penny, 2000; 
Goloboff, 2003). Most maximum likelihood approaches in 
phylogenetics use maximum average likelihood, a form of 
maximum relative likelihood, which is discussed below.

The likelihood of an hypothesis (Fisher, 1922) is a 
function of the probability, P, of the data (D), given the 
hypothesis (H). Likelihoods are calculated for each possible 
tree topology, given the data and assuming a particular 
model of molecular evolution (Felsenstein, 1973, 1981, 
2004; Swofford et al., 1996). The hypothesis, H, contains 
three distinct parts: 1) a mechanism or model of sequence 
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evolution, 2) a tree and 3) branch lengths (Penny et al., 
1992). For a given data set, likelihoods are calculated for 
each of the possible tree topologies, or a sample of them, 
and the tree topology with the highest overall likelihood is 
the preferred phylogenetic hypothesis.

Calculating the likelihood can be computationally 
laborious if the data set is large, especially if the maximum 
likelihood model uses rooted trees in its calculus. The most 
general and most commonly used models in molecular 
analyses are, however, time reversible (Rodriguez et al., 
1990; Swofford et al., 1996). With a time reversible model 
the probability of character state change from state i to 
state j is the same as the probability of change from state 
j to state i (Felsenstein, 1981). Under this condition the 
likelihood of the tree does not depend on the position of 
the root, and the use of unrooted networks greatly reduces 
the total number of trees to be evaluated, and decrease 
computation time (Rodriguez et al., 1990; Swofford et al., 
1996). The network with the highest overall likelihood is the 
preferred phylogenetic hypothesis; the network topology 
thus maximizes the likelihood function for the data given 
the specifi ed model (Felsenstein, 1973). The network is 
converted into a tree by rooting it with an outgroup or a 
molecular clock (Swofford et al., 1996; Felsenstein, 2004). 
It is always possible, however, that the network represents 
only a local maximum, or that it is one of a larger number 
of equally likely networks (Felsenstein, 1973; Chor et al., 
2000; Salter and Pearl, 2001).

Models of Molecular Evolution
Likelihood analyses involve the same assumptions about 

the evolutionary process as other methods, including that 
evolution occurs in a branching pattern and is independent 
in different lineages (Swofford et al., 1996). The character 
change probabilities are calculated using a specifi ed model 
of molecular evolution, which requires further assumptions 
about the nucleotide substitution process, including the 
assumption that sequence evolution can be modeled as a 
random, or stochastic, process (Rodriguez et al., 1990). 
Substitution models are typically based on a homogeneous 
Markov process (Rodriguez et al., 1990; Swofford et al., 
1996) that assume that the probability of a state change at 
one site does not depend on the history of that site and that 
probabilities of substitution do not change signifi cantly 
in different parts of the tree (Felsenstein, 1981, 2004; 
Swofford et al., 1996).

A DNA substitution model is expressed as a table of 
rates (substitutions per site per evolutionary distance unit) 
in which nucleotides are replaced by alternate nucleotides 
known as the Q matrix (Rodriguez et al., 1990; Swofford 
et al., 1996; Huelsenbeck and Crandall, 1997). In the 
instantaneous rate matrix, Qij represents the rate of change 

from base i to base j over an infi nitesimal evolutionary 
time period dt (Swofford et al., 1996). The rates defi ned in 
the Q matrix are per instant of time dt; in order to calculate 
the likelihoods of each site, the probabilities (Pej) of the 
possible state changes along a branch length of t (Swofford 
et al., 1996) must be determined. For the simple Jukes-
Cantor model, these values are easily evaluated because 
there are only two probabilities -the probability of a state 
change and the probability of stasis-such that the transition 
probability matrix consists of two values.

The substitution probability matrix that corresponds 
to the most general model has twelve values, one for 
each different substitution rate.  The branch lengths are 
unknown prior to the analysis and must be estimated 
in the course of the likelihood calculation (Goloboff, 
2003). Estimation of branch lengths involves an iterative 
algorithm in which each branch is optimized separately 
(Felsenstein, 1981; Swofford et al., 1996). Unlike the rate 
and frequency parameters, branch lengths are specifi c to a 
particular tree topology. For each tree, multiple different 
branch lengths need to be evaluated, and branch lengths 
must be recalculated for each network considered (Penny 
et al., 1992).

Models employed in likelihood analyses make explicit 
assumptions regarding sequence evolution (Swofford et al., 
1996). The General Time Reversible Model (GTR) is the 
most general stochastic model of nucleotide substitution 
presently in use. It models base substitution as a random 
Markov process in which substitution rates are independent 
among sites, constant in time, equal in two lineages, and 
in which the ancestral sequence base frequencies represent 
the equilibrium frequencies (Rodriguez et al., 1990). The 
GTR model has a maximum of 12 different substitution 
rates (estimated from the data and using the aforementioned 
assumptions in their calculus) and at least seven parameters 
(Rodriguez et al., 1990). Because of its greater complexity, 
nearly all models (including JC, K2P, K3ST, L, TK, GIN, 
and TN) can be considered special cases of the GTR model 
(Rodriguez et al., 1990). For example, the Jukes-Cantor 
(often abbreviated JC69) model is the simplest model and 
assumes that all base substitutions are equally likely (i.e. 
all rate parameters are equal) and that the base frequency 
parameters are equal. The K2P model has two rate 
parameters since it considers differences in rates between 
transition and transversion type substitutions (Rodriguez 
et al., 1990). The K3ST model considers three substitution 
rates, one for transitions and two for each of two types of 
transversions.

The mathematical procedures of likelihood methods 
for phylogeny reconstruction have one critical component 
that is not met in the standard calculus of maximum 
likelihood. For probabilities to be multiplicative, the change 
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probabilities must be independent. The base compositional 
frequency parameters in the Q matrix are derived from 
the terminal taxon base sequences over all characters in 
the analysis (Siddall and Kluge, 1997). Rate parameters 
(relative rate and mean rate) are calculated using the Q 
matrix and the assumption that base frequencies remain 
constant over evolutionary time (Rodriguez et al., 1990). 
All sites use the Q matrix to calculate the Pej values and 
therefore the probability for character i is dependent on all 
other characters through the frequency parameters in Q.  
Characters and their associated probabilities are thus not 
independent quantities, even though they are assumed to 
be so in the calculus of the method (e.g., Felsenstein, 1973, 
1981; Rodriguez et al., 1990; Swofford et al., 1996). The 
non-independence of site change probabilities may be one 
factor responsible for the fact that the total likelihood of the 
universe of possible trees does not sum to unity (Felsenstein, 
1981). The true probabilities for character changes should 
be calculated on an individual basis because they are 
connected with unique and historically contingent events 
(see below) (Farris, 1973). But this is clearly impossible, 
as it not only requires knowledge of the true history before 
undertaking an analysis, it also requires an objective and 
consistent way of determining the probability of a novel, 
context- specifi c evolutionary event (Farris, 1973); which 
is computationally impossible (Felsenstein, 1973, 1981; 
Siddall and Kluge, 1997). So, as currently and commonly 
employed in phylogenetic maximum likelihood methods, 
basic assumptions of frequency probability theory are 
violated (Yang, 1996; Siddall and Kluge, 1997). 

Choosing a Model – More Ontological Parsimony
The choice of an appropriate model is a critical aspect 

of a phylogenetic likelihood analysis. There are many 
models of molecular evolution, and determining which to 
use can signifi cantly infl uence the results of an analysis. 
Models range in complexity from the relatively simple 
Jukes-Cantor model, through the most complex GTR 
model. Currently there are at least 16 models that are 
commonly used in molecular systematics, most of which 
are special cases of the GTR model (Rodriguez et al., 
1990). Each of the 16 basic models is varied with regard to 
G (gamma distribution), I (proportion of invariable sites), 
and both (G+I), for a total of 56 different options (Posada 
and Crandall, 1998).  The overall likelihood score of a tree 
increases with increasing complexity of the model, but the 
accuracy of the model decreases with the increased number 
of estimated parameters (Huelsenbeck and Rannala, 
1997b). The model that best fi ts the data while minimizing 
its complexity is chosen through pair-wise comparison of 
the maximum likelihood trees generated under each model 
using hierarchical likelihood ratio tests (Huelsenbeck and 

Crandall, 1997; Huelsenbeck and Rannala, 1997b; Posada 
and Crandall, 1998; Johnson and Omland, 2004). When 
no statistically signifi cant difference between two trees 
is found, the simplest model is selected. Recently several 
researchers have noted that the models being tested are 
not necessarily nested within each other, which is an 
assumption of the likelihood ratio test. These researchers 
advocate the use of the Akaike Information Criterion or the 
Bayesian Information Criterion when choosing the most 
parsimonious model (e.g. Posada and Buckley, 2004). 
Model selection based on the relative likelihood values 
is an ontological appeal to the principle of parsimony, 
because choosing the least complex explanation of the data 
rules out the possibility that evolution proceeded in a more 
complex manner (Huelsenbeck and Rannala, 1997b).

 
Criticisms of the Models

Many criticisms of maximum likelihood methods 
are directed at its a priori dependence on a model. 
Evolutionary realism of the models employed in likelihood 
analyses is often compromised by approximations 
designed to improve the computational effi ciency of the 
algorithms. For example, Lockhart et al. (1994) suggested 
that a modifi ed GTR model, in which time-reversibility is 
relaxed, across site rate variation is considered, and the 
nucleotide compositional frequencies are fl exible, allows 
more evolutionary ‘freedom’ than any other model, and 
best considers the historical ambiguity and contingency 
of the evolutionary process. They suggested that this 
complex, parameter rich, and computationally intensive 
model should be logically preferred over all other models, 
if inferring phylogeny using the most realistic conception 
of evolution (i.e., evolution is complex) is the goal of 
the analysis. Relaxing the time-reversibility assumption, 
however, introduces the need for rooted trees, and is 
accompanied by additional computational problems 
(Swofford et al., 1996). Relaxing the assumption that 
rates are equal across all sites can be accomplished by 
adding another relative rate parameter to the matrix, which 
commonly involves modeling rate heterogeneity using 
the Gamma distribution (Swofford et al., 1996). If this 
distribution is modeled as continuous (as it should be), it 
again becomes computationally laborious, and a discrete 
distribution typically serves as a computationally more 
effi cient approximation (Swofford et al., 1996).

Maximum likelihood also requires that numerous 
parameters be approximated using the data, and relies 
heavily on the frequency parameters that are taken directly 
from the observed sequences and the assumption that base 
frequencies are at equilibrium (Swofford et al., 1996). In 
this sense, likelihood methods require that the processes 
maintaining systems today were persistent throughout the 
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entire evolutionary history of the clade being investigated 
(Brooks and McLennan, 2002). Siddall and Kluge (1997) 
and Lockhart et al. (1994) provided empirical examples 
in which the nucleotide frequencies differ across terminal 
taxa, showing that the assumption of equilibrium base 
frequencies is not always tenable. 

Criticisms of the Method
Use of maximum likelihood in phylogenetics relies on 

three assumptions: evolution is independent in (1) different 
lineages and (2) different sites for a given tree (Felsenstein, 
1981, 2004; Rodriguez et al., 1990; Swofford et al., 1996), 
and (3) the same stochastic process of substitution applies 
in all lineages (Felsenstein, 1981). Some believe the 
assumptions are unrealistic and/or violated in the calculus 
(Siddall and Kluge, 1997; Huelsenbeck and Nielsen, 1999; 
Kluge, 2001; Goloboff, 2003), but likelihood users appeal 
to simulations to argue that the method is generally robust 
to violations of these assumptions (e.g., Felsenstein, 1978, 
1981, 2004; Goldman, 1990; Penny et al., 1992; Yang, 
1994; Swofford et al., 1996; Yang, 1996; Huelsenbeck and 
Rannala, 1997b; de Queiroz and Poe, 2001).

By relying on a specifi ed model of sequence evolution 
to infer phylogenetic relationships, interpretation of 
maximum likelihood results comes with the caveat “if the 
model is true, then…” We may know which of the models 
best fi ts the data according to a model selection procedure, 
but how can the validity of the model itself be independently 
tested? Testing the validity of models, although it has been 
recognized as important (Goldman, 1990), is rarely done 
in practice (Siddall and Kluge, 1997). 

Bayesian Likelihood
This claim [that the simplest hypothesis is 
more likely to be true] is generally defended 
by appeals to the Bayesian account of theory 
confi rmation… (McAllister, 1996: 107)
Reverend Thomas Bayes, living in the early 18th 

century, was an English mathematician who was interested 
in the concept of using a priori knowledge to predict future 
events. His paper, ‘An Essay Towards Solving a Problem 
in the Doctrine of Chances’, published two years after his 
death in 1761, introduced what would become known as 
Bayes’ theorem  (Barnard and Bayes, 1958), in which the 
posterior probability, [P (H | D)], is the probability of the 
hypothesis given the observations, or data (D). Note that this 
differs from likelihood, which is the probability of the data 
given the hypothesis. However, the likelihood, P (D | H), is 
a parameter in the calculation of the posterior probability. 
P (H) is the prior probability of the hypothesis before the 
observation, data, or analysis, and refl ects the original 
beliefs regarding the problem. P(D) is the probability of the 

data, equal to the sum of the nominator for all considered 
hypotheses, and acts as a normalizing factor to ensure the 
sum of all posterior probabilities equals 1 or 100%. Bayes’ 
Theorem describes the relationship between the prior 
and posterior probabilities. The prior probability of the 
hypothesis is updated to take into account the observations, 
producing a new estimate of the hypothesis that may form 
the prior probability for subsequent calculations if more 
observations are then considered. Bayes’ Theorem thus 
acts in an iterative way, altering the posterior probability 
to refl ect the effects, or likelihood, of all available data.

It was not until the latter half of the twentieth century 
that Bayes’ ideas would be applied to phylogenetics. 
Felsenstein (1968) briefl y discussed Bayesian ideas as 
they could apply to phylogeny reconstruction in his Ph. 
D. thesis, but the statistical and computational framework 
with which to derive reliable approximations of posterior 
probabilities was not available at the time (see Huelsenbeck 
et al., 2002). Harper (1979) also recognized the usefulness 
of Bayes’ Theorem for choosing between competing 
phylogenetic hypotheses, although his method was largely 
conceptual and differed signifi cantly from the Bayesian 
likelihood approach discussed below. His version of the 
Bayes’ Theorem sought to determine the probability that 
some taxa were monophyletic given the observation of a 
synapomorphy between them. Harper’s calculation was 
unique in including estimates of error due to misinterpreting 
plesiomorphies or homoplasies as synapomorphies, but 
was plagued by the need to subjectively estimate the 
likelihoods of null and alternative hypotheses. In 1996, 
three independent groups introduced working Bayesian 
methods for phylogenetics that are similar to those 
currently in use (Li, 1996; Mau, 1996; Rannala and Yang, 
1996). All three evaluate phylogenetic hypotheses using 
the posterior probabilities of different trees.

The likelihood parameter, P (Data | Tree), is calculated 
using the same general methodology and models of 
molecular evolution described above for the maximum 
likelihood approach. The prior probability of the tree, 
P (Tree), is usually considered to be equal for all trees 
a priori (Archibald et al., 2003). The use of equal prior 
probabilities (=1/# possible trees) implies that no particular 
topology is a priori preferred over any other and eliminates 
the sometimes-diffi cult task of calculating complex prior 
probabilities when hypotheses vary with respect to their 
preconceived probabilities. However, the prior probability 
for any given tree or set of trees can be set to refl ect 
researcher experience, the results of previous analyses, or 
taxonomy (Huelsenbeck et al., 2002). The denominator, 
simplifi ed here as P (Data), is the normalizing factor 
involving summation over all trees (Yang and Rannala, 
1997). The resulting posterior probability, P (Tree | Data), 
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can be interpreted as the probability that the tree is ‘correct’, 
given the data, the priors, and the model of character 
change (Huelsenbeck et al., 2000). There are several ways 
to present the results of a Bayesian analysis. The tree with 
the maximum a posteriori probability can be selected as 
the preferred phylogenetic hypothesis, this is also known 
as the MAP, or maximum a posteriori estimation of 
phylogeny (Rannala and Yang, 1996). Alternatively, one 
may construct a 95% credibility consensus tree by starting 
with the MAP tree and consecutively adding the next most 
probable trees until the probabilities total 0.95 (Altekar et 
al., 2004).

Posterior Probability Estimation using Markov Chain 
Monte Carlo

Calculating posterior probability of a tree is 
computationally expensive because it involves summation 
over all possible trees, and for each tree requires integration 
over all possible permutations of branch lengths and 
substitution-model parameters (Larget and Simon, 1999). 
This is not possible in most practical applications and 
requires that posterior probabilities be approximated 
(Huelsenbeck et al., 2002). Markov chain Monte Carlo 
(MCMC) methods are used to approximate the distribution 
of posterior probabilities and substitution parameters, 
allowing contemporary Bayesian likelihood methods to be 
computationally feasible (Hastings, 1970; Tierney, 1994). 
The application of the MCMC to phylogeny inference 
is discussed in detail by Mau and Newton (1997), Yang 
and Rannala (1997), Mau et al. (1999), Larget and Simon 
(1999), and summarized in Huelsenbeck et al. (2001, 2002), 
Pagel et al. (2004), and Kelly (2005). First, a random tree 
is selected and evaluated. Another tree is proposed by usng 
dependent sampling from the approximated distribution 
to change one variable of the original tree (e.g. topology, 
branch length, model parameters, etc.). The two trees are 
then compared using the Metropolis-Hastings algorithm 
(Metropolis et al., 1953; Hastings, 1970; Green, 1995; 
Huelsenbeck et al., 2002): if the second tree represents an 
improvement, it is accepted and sampled, if not, the tree 
is accepted or rejected proportional to the likelihood ratio 
between it and the previous tree (Pagel et al., 2004). An 
accepted tree and its parameters are recorded and it then 
becomes the prior hypothesis to which the next change is 
compared. Since the MH algorithm results in a generalized 
increase in the posterior probability of successive accepted 
hypotheses, it will eventually converge on the most-likely 
range of model parameters and thereafter sample tree 
hypotheses in proportion to their frequency in the actual 
posterior density (Tierney, 1994; Pagel et al., 2004). The 
tree hypotheses sampled by the chain prior to convergence 
are generally discarded from the fi nal posterior probability 

calculations as part of the ‘burn-in’ since their acceptance 
is somewhat dependent upon sub-optimal (non-maximum 
likelihood) alterations of model parameters. The longer 
the chain is run, the greater precision with which the actual 
posterior distribution of trees is approximated (Pagel et 
al., 2004). Thus the frequency with which any particular 
tree is sampled while at convergence is proportional to its 
posterior probability. Likewise, the frequency with which 
a particular clade is seen in any hypotheses is proportional 
to its posterior probability. Extrapolating the actual 
posterior probability distribution from the MCMC chain is, 
however, only valid if the chain has reached convergence 
at the global maximum in the distribution (Altekar et al., 
2004). To prevent entrapment of chains at sub-optimal 
‘hills’ in the distribution multiple, simultaneous Markov 
chains are used, which periodically swap information. This 
Metropolis-coupled MCMC process improves mixing and 
convergence and allows the analysis of exceedingly large 
datasets that are beyond the scope of conventional single-
chain MCMC Bayesian likelihood methods (Geyer, 1991; 
Huelsenbeck et al., 2001; Altekar et al., 2004).

Advantages of Bayesian Likelihood
A major advantage of the Bayesian likelihood 

method is the ease with which posterior probabilities 
can be interpreted (Huelsenbeck et al., 2002). Under the 
assumption that the evolutionary model is true and that the 
MCMC has accurately sampled the posterior probability 
distribution, the posterior probability value represents the 
probability that the tree is correct given the data. Similarly, 
the proportion of trees in the MCMC sample in which a 
monophyletic group appears represents the probability that 
the clade is ‘true’, given the caveats of model and data.

One of the most appealing aspects of Bayesian 
phylogenetic inference is its presentation and comparison 
of multiple optimal hypotheses. While maximum likelihood 
usually converges on a single hypothesis and maximum 
parsimony attempts to produce the shortest topologies, 
Bayesian likelihood produces a range of solutions, each 
with a corresponding overall posterior probability as 
well as comparable node support values for alternative 
topologies within each tree hypothesis (Li, 1996; Mau et 
al., 1999). Another major difference between Bayesian and 
maximum likelihood methods is that Bayesian likelihood 
calculation not only involves summation over all possible 
combinations of model parameters and branch lengths, 
but also includes a prior probability density distribution of 
these latter variables (Huelsenbeck et al., 2002), allowing 
the values of parameters to be adjusted according to 
MCMC sampling and MH selection. Therefore, although 
the parameters of distance correction models are specifi ed 
a priori as in maximum likelihood, the values of these 
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parameters are allowed to vary and attain maximal states 
dependent on the topology in consideration.

Some view it as an advantage that Bayesian likelihood 
analysis requires the incorporation of previous knowledge 
or beliefs in terms of prior probabilities. The mechanics of 
formulating a starting prior can be diffi cult if one chooses 
to base it on the results of previous analyses or taxonomy 
(‘complex priors’, Huelsenbeck et al., 2002). Thus few 
priors are specifi ed in practice. However, several authors 
(Li, 1996; Yang and Rannala, 1997; Larget and Simon, 
1999; Huelsenbeck and Ronquist, 2001; Altekar et al., 
2004) have explored the effects of different starting priors 
and found chains will nevertheless converge on consistent 
samples. Li (1996) further found that informative starting 
priors reduced the burn-in period by reducing the number 
of generations needed for maximum likelihood estimation. 
Making the initial prior probabilities of each tree equal 
eliminates complex priors, as well as any a priori 
assumptions that one hypothesis is more probable than any 
other in light of prior beliefs; clearly, this approach is not 
in the true Bayesian spirit (see Archibald et al., 2003).

Criticisms of Bayesian Likelihood
Bayesian likelihood approaches to phylogeny 

require a likelihood value for a given tree topology 
(i.e., phylogenetic hypothesis) to calculate the posterior 
probability of that evolutionary scenario. The likelihood 
calculation used in the Bayesian method requires the same 
models of evolution and their associated assumptions as 
the maximum likelihood methods described above, and 
thus all of the cautions inherent in maximum likelihood 
phylogeny estimation also apply to Bayesian likelihood 
analysis (Larget and Simon, 1999).

Analogous to maximum likelihood, the posterior 
probability of a tree involves summation over all possible 
trees (to calculate P (D)), including all their possible 
permutations in terms of branch lengths and substitution-
model parameters (Larget and Simon, 1999). This is 
impossible to perform in most practical applications 
because of computational and time constraints, and 
necessitates approximation of posterior probabilities using 
Markov chain Monte Carlo techniques (Hastings, 1970; 
Tierney, 1994). Markov chains may fail to provide an 
accurate estimate of posterior probability distributions if 
they are not allowed to run long enough, or if mixing is a 
problem due to widely separated peaks in the distribution 
(Kelly, 2005). The longer the chain is run, the more precise 
the estimate of posterior probability distribution. However, 
it is diffi cult to know when a chain has run long enough to 
provide an acceptable estimate. Huelsenbeck et al. (2002) 
propose three recommendations to ensure that the posterior 
probability is sampled reliably, 1) run several long chains 

independently and check for consistency in results, 2) 
run multiple chains, each starting from a random tree and 
check for consistency (Metropolis-coupled MCMC), and 
3) monitor the model parameters for convergence. The 
Metropolis-coupling technique promotes good mixing 
and increases the speed of convergence (Huelsenbeck 
and Ronquist, 2001; Altekar et al., 2004), however chains 
must still be run for long periods following convergence 
to ensure one or more chains have not merely been caught 
in sub-optimal peaks in the distribution (Huelsenbeck et 
al., 2002).

The connection between  Hennigian and Bayesian 
Likelihood Approaches

Shannon (1948) founded information theory using 
the statistical formulation of entropy as a synonym for 
expected uncertainty in the system, following on the 
proposition that increases in entropy were associated 
with losses of information. Shannon’s use of entropy 
in information theory was consistent with its use in 
statistical mechanics and probability theory (Brillouin, 
1951, 1953, 1962), which led Jaynes (1957a, 1957b) to 
formulate the fi rst entropy maximization principle, in 
which the maximum entropy state of a system could be 
formally construed as the a priori most probable state 
(something originally proposed by Van der Waals, 1911). 
Departures from the most probable/most expected state 
were designated as “surprisals” (Kullbach,,, 1951; term 
fi rst introduced by R. Levine). Parenthetically, and with 
respect to our discussion of maximum likelihood analyses 
above, Jaynes’s use of the maximum entropy principle 
provided a rationale for choosing the most complex, rather 
than simplest, model for explaining a complex system. He 
reasoned that adopting the most complex model among all 
those that explained a system completely would expose 
our ignorance of possibilities, while adopting the simplest 
would give us a false sense of security, leading us to think 
we had more complete knowledge than we had.

Gatlin (1972) added two forms of redundancy in 
the context of biological (specifi cally DNA sequence) 
evolution to this conceptual framework. R-redundancy 
results from the repeated occurrence of the same symbol 
to get a message across. This is one way to ensure proper 
communication of a message, but since each symbol must 
be repeated, R-redundancy is also associated with reduced 
message variety. D-redundancy, or Shannon redundancy, 
results when multiple observations of the same thing 
require only one explanation (a single symbol). For 
example, the same trait occurring in two sister species needs 
only a single explanation (ie., one origin in the common 
ancestor). D-redundancy is associated with increased 
message variety, since no symbol need be repeated, and 
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with reduced message fi delity; missing the symbol results 
in a loss of information because it will never be repeated. 
Gatlin associated D-redundancy with optimal coding in 
communication systems. Overall then, R-redundancy is 
associated with low information density per symbol (each 
symbol represents only itself) and D-redundancy with high 
information density per symbol (each symbol represents 
many observations).

Nine years later, Brooks (1981), followed by Brooks 
et al. (1986), used the statistical concept of entropy as 
embodied in information theory to establish the conceptual 
links between Hennigian and Bayesian likelihood methods. 
Brooks (1981) showed that Hennigian phylogenetics 
operationally produced the lowest possible informational 
entropy confi guration for a set of observations over a given 
set of taxa. Brooks et al. (1986) then made an informal link 
between this and Gatlin’s D-redundancy, proposing the so-
called D-measure for choosing optimal phylogenetic trees 
on the basis of maximum information density. Although 
not presented in those terms, the D measure is Bayesian 
in nature (as perhaps are all efforts to apply statistical 
reasoning to historical reconstructions). Following Jaynes 
(1957a, 1957b), Bayesian approaches in information theory 
are thus those for which the a priori subjective hypothesis 
is determined by the entropy maximum principle – the a 
priori most probable result is Hmax, in direct analogy with 
the maximum entropy state being the most probable for a 
closed system. This becomes Bayesian if we stipulate that 
the set of observations we are using in any analysis is a 
closed subset of all possibilities, i.e., we stipulate that our 
estimate of Hmax is based on a subjective sub-sample of 
an imperfectly known universe of characters, and we will 
not introduce additional observations during the testing 
procedure.

The entropy maximum is not only analogous to the a 
priori expected most probable state, it is also the state of 
lowest information density of each of the observations, 
hence least informative, hence least surprising (in 
a Bayesian sense). This would occur if each trait in 
each species evolved independently (i.e., there is no 
phylogenetic conservatism in character evolution). For any 
set of observations (a subjectively selected subset of all 
observations, drawn from a universe for which we do not 
have any sense of the actual size or distribution of variables), 
we can objectively compute the most probable state (Hmax). 
We can also objectively compute the least probable state 
(Hmin), which is the state of greatest information density 
for the observations, and thus the state of greatest surprise. 
This occurs when each trait evolves only once (i.e, when 
there is no homoplasy). The most powerful analysis of 
such data is one that seeks to fi nd the most improbable/
highest information density confi guration permitted by all 

the data at hand. For phylogenetic analysis, Hmax and Hmin 
can be calculated from the basic data matrix (hence Hmax 
is a priori), whereas Hobs is calculated over a set of trees 
(hence, it is a posteriori). The preferred result is the one in 
which Hobs approaches Hmin as closely as possible, which 
will also show the greatest difference between Hmax and 
Hobs.

Applying the D measure leads to a number of conclusions 
for phylogenetic analysis (Brooks et al., 1986; Brooks and 
Wiley, 1988): (1) information density is proportional to 
evolutionary conservatism; (2) dichotomous solutions 
are preferred over polytomies, because dichotomous 
partitions of information are more information dense 
than polytomous ones; (3) there is no a priori difference 
between symmetrical and asymmetrical tree structure in 
terms of information density, since it is the information 
that produces the tree, not the reverse; (4) for any data set, 
the most information dense set of relationships of all taxa 
over all characters allowed by the data is the shortest tree; 
and (5) when there are multiple most parsimonious trees,  
ACCTRAN optimization provides a more information 
dense summary of the data than DELTRAN optimization.

Missing from this formalism are statistical signifi cance 
tests capable of answering two questions: fi rst, is the result 
(Hobs) signifi cantly different from the a priori expectation 
(Hmax)?; and second, are less information-dense alternatives 
(e.g., other equally parsimonious trees or less than most 
parsimonious trees) for the same set of data signifi cantly 
different from each other?

While such tests are not yet available for Bayesian 
Likelihood analyses, either, there is reason to believe 
that the development of such tests for one approach will 
suffi ce for both methodologies. Bayesian Likelihood 
bears a strong similarity to the D measure. For example, 
a key operation in the computer program Mr. Bayes 
(Ronquist and Huelsenbeck, 2003; Ronquist, 2004) is 
“data compression”, which must be related to the most 
information dense confi guration of the observations in the 
data matrix. As noted above, informational measures are 
now being used to choose the most parsimonious model 
for Bayesian likelihood analyses, reinforcing the suspicion 
that Hennigian and Bayesian likelihood approaches are 
highly complementary. In addition, Huelsenbeck and 
Rannala (2004) recently proposed that the best Bayesian 
likelihood results would be obtained if one chose the most 
complex model, much in the same sense as the proposals 
by Lockhart et al. (1994) for maximum likelihood. These 
views also complement the use of the Akaike Information 
Criterion or the Bayesian Information Criterion when 
choosing the most parsimonious model for maximum 
likelihood analysis proposed by Posada and Buckley 
(2004). The most complex model possible is one in which 
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the evolution of each character state in each taxon is 
independent, or Hmax for any data set. 

How Do You Decide Which Method(s) to Use?
We have discussed a variety of objective methods for 

pursuing quantitative phylogenetic analysis. We believe, 
however, that there are no objective means by which one 
can choose among these methods. Consequently, it is no 
surprise that some of the most contentious interactions 
among phylogeneticists concern the very subjective issue 
of which methods are “best” or “proper” or “correct”. It is 
common for groups of contending scientists, faced with 
such a situation, to resort to philosophical arguments in an 
attempt to claim priority for one viewpoint over another on 
the basis of some set of fi rst principles. This has certainly 
been the case with phylogenetics.

 
Deductive versus inductive approaches

The fi rst salvo fi red in this confl ict was by Wiley 
(1975), who, defending phylogenetic systematics against 
claims that it was not falsifi able, proposed that phylogenetic 
hypotheses of homology could be seen as an exercise in 
hypothetico-deductive reasoning

Once a hypothesis of homology is formulated 
from the world of experience it is tested in two 
phases: by its own set of potential falsifi ers 
and by a set of potential falsifi ers of the 
phylogenetic hypothesis to which it belongs 
as a proper subset (i.e. it is tested by other 
hypotheses of synapomorphy through the 
testing of the phylogenetic hypotheses which 
they corroborate). Both phases of testing 
must be done under the rules of parsimony, 
not because nature is parsimonious, but 
because only parsimonious hypotheses can be 
defended by the investigator without resorting 
to authoritarianism or apriorism. (Wiley 1975: 
236)
Hypotheses of homology (characters), together with 

their connected hypothesis of phylogenetic relationships, 
can be tested by other independently proposed homologies, 
which then represent ‘potential falsifying hypotheses’ 
(sensu Popper 1968). Wiley emphasized that such a 
process is not circular, but represents a case of ‘reciprocal 
illumination’ (Hennig 1966). He noted that the preferred 
phylogenetic hypothesis is the one that has been refuted 
the least number of times. Shortly thereafter, Engelmann 
and Wiley (1977) suggested that outgroup comparison 
made polarization decisions testable in a Popperian sense; 
that is, such decisions were capable of being falsifi ed. That 
Hennigian phylogenetics was justifi ed by the hypothetico-
deductive approach of Popper quickly gained support (e.g., 

especially Gaffney 1979) and still has strong adherents 
(e.g., Kluge 2003) who consider Hennigian phylogenetics 
to be deductive in nature.

Recently, de Queiroz and Poe (2001; also Faith and 
Trueman 2001) attempted to link Popperian thought with 
likelihood approaches, suggesting that likelihood is the 
basis for Popper’s notions about the degree of corroboration 
of a hypothesis. For Popper, corroboration was embedded 
in a falsifi cationist context, however these authors sought 
to decouple Popper’s ideas about corroboration from 
those about falsifi cation. Their degree of corroboration 
is thus more correctly identifi ed with Popper’s degree of 
confi rmation, which Popper associated with an inductivist 
and verifi caiotnist viewpoint, and rejected (Popper 1997). 
This seems to get us nowhere, since it leads back to the 
position that if a model is accepted as true, or highly 
typical, its use is justifi ed. But, no objective means is 
provided for verifying or falsifying the validity of the 
model beyond the arguments about statistical consistency 
whose shortcomings we discuss below.

Regardless of semantic arguments about corroboration 
and confi rmation, and possibly a high degree of revisionist 
interpretation of Popper’s views on the relationship between 
corroboration and falsifi cation, these arguments do not 
counter the basic observation that maximum likelihood 
methods are more inductive than deductive in spirit. And, 
if the difference between what we have characterized as the 
epistemological and the ontological parsimony approaches 
is the difference between a preference for deduction and a 
preference for induction, the history of science tells us that 
there is no objective means for choosing between them, 
despite strong personal convictions on both sides of the 
issue.

However popular it has been among some systematists, 
this battle of philosophical perspectives has been criticized 
by philosophers; best summed up by Sober (1988), who 
identifi ed phylogenetic analysis as abductive, that is, 
neither exactly deductive nor exactly inductive. This 
occurs because the phylogenetic inference is based on a 
retrodictive analysis of historically unique events. That 
is, inference goes from from effects to cause(s). As 
systematists, we observe the effects (phylogenetic trees) 
under the causal theory of descent with modifi cation 
(i.e. observable synapomorphies), but there are also 
other possible causes for confl icting data (reversals and 
parallelisms), just as there might be multiple cuases for 
the same phylogenetic outcomes. Multiple conclusions 
about cause(s) are thus possible in phylogenetic inference. 
By contrast, true deduction enables inferences from cause 
to effect(s), with singular conclusions for any given 
analysis.

The differences between the two types of methodologies 
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then, is not so much one of deduction versus induction, 
but one of the preference for using either epistemological 
or ontological parsimony. Hennigians choose the 
epistemological perspective which suggests that evolution 
may have been so complex that we should expect to fi nd 
confl icts in the data, whose resolution requires a logical 
decision-making principle (Brooks and McLennan, 
2002). An important corollary of this perspective is that 
there need be no necessary connection between the most 
parsimonious hypothesis and truth. Hennigians are thus 
preoccupied with the robustness of their results. They do 
not believe their hypotheses can be verifi ed, but do believe 
that they can be falsifi ed at least in part using new data. 
Phylogeny reconstruction is thus an open-ended process 
involving a potentially endless search for information. 
If, at some point in the future, the accumulation of data 
leads to a situation in which the phylogenetic hypothesis 
for a given group is no longer changing with the addition 
of new data, Hennigians may express the belief that the 
hypothesis has approached the truth as closely as possible, 
but in principle a Hennigian will never claim to have the 
true phylogeny.

The ontological perspective adopted by likelihood 
and Bayesian approaches, by contrast, requires fi rst that 
evolution be parsimonious in some manner, usually as 
defi ned by certain assumptions and parameters of a model; 
and second, that the resulting phylogenetic hypothesis be 
accepted as true so long as the model is accepted as true, 
qualifi ed by the parameters of the model and the data. 
McAllister (1996: 107) stated it thusly,

The argument from likelihood rests on 
the claim that, of two theories that fi t the 
data equally well, the simpler has a higher 
likelihood of being true. 
Practitioners of likelihood are thus preoccupied with 

the accuracy of their results, and believe it is possible to 
develop means by which their preferred hypotheses can be 
verifi ed with respect to the true phylogeny.

Both perspectives have strengths and weaknesses, 
both are addressing important evolutionary questions. We 
believe that it is the failure to distinguish ontological from 
epistemological uses of parsimony that has led to endless 
disputes as advocates argue past each other, rather than a 
failure in the methods themselves.

Statistical Consistency
A method is said to be statistically consistent if it 

converges on the true tree as progressively more character 
data are added to the analysis. One reason likelihood 
approaches have gained popularity is that other methods of 
phylogenetic inference, namely Hennigian phylogenetics 
and maximum parsimony, are statistically inconsistent 

under certain circumstances (Felsenstein 1978; Penny et 
al. 1992).  The region of statistical inconsistency has been 
referred to as the ‘Felsenstein Zone’, and it is the result of a 
process termed ‘long-branch attraction’.  The long-branch 
attraction problem occurs when convergent homoplastic 
changes are more frequent than non-reversed changes in 
an informative part of the tree (Felsenstein 1978). This 
confounds Hennigian phylogenetics because, under the 
Auxiliary Principle, the convergent homoplasies will tend 
to be considered as homologies and thus the taxa with 
their convergent ‘long-branches’ will be grouped together 
(Hennig 1966; Felsenstein 1978). In simplest terms, when 
the data are lying about the relationships of the taxa, 
Hennigian phylogenetics may fail to discover the true 
relationships. How often this occurs in nature is unknown, 
but Huelsenbeck (1997) cited one case involving insects as 
exemplifying the long-branch attraction problem in a real 
data set (but see Siddall and Kluge 1997: 319-20). Some 
believe, however, that ‘noise’, or random data, does not 
misdirect phylogenetic systematics often enough to be a 
major concern (Wenzel and Siddall 1999).

Maximum likelihood has been reported to exhibit the 
favourable property of statistical consistency in the face 
of these situations (Felsenstein 1978; Penny et al. 1992; 
Yang 1994). It is true that in statistics the maximum 
likelihood estimate of a parameter is consistent (Fisher 
1922; Edwards 1972). Simulation experiments have shown 
this to be true in the phylogenetic context (Yang 1996), 
but only when the same random model used to generate 
the data is used and/or only when a certain correction 
factor is implemented (Goloboff 2003; Steel et al. 1993; 
Siddall and Kluge 1997; Steel and Penny 2000). It is an 
important caveat that maximum likelihood methods are 
only consistent (i.e. converge on the ‘true tree’) under a 
certain set of circumstances which typically requires that 
the ‘correct’ model is used, but that the correct model 
and the true tree are both unknowable for real systems. 
When the model is insuffi cient or inappropriate, appeals 
to statistical consistency are rendered moot (Siddall and 
Kluge 1997).

In a complementary vein, Farris (1973) suggested 
a protocol by which parsimony methods could be 
interpreted as derivatives of statistical estimation methods. 
This probabilistic view of parsimony was critiqued by 
Felsenstein (1973, 1978, 1981, 1983), who focused on 
the statistical defi cits of parsimony when viewed as a 
likelihood method. In general, parsimony and likelihood 
approaches produce the same results under the assumption 
of particular parameters for parsimony, i.e. low rates of 
evolutionary changes or equal rates of evolution among the 
observed lineages, or low rates of homoplasy (Felsenstein 
1983). It has also been demonstrated that parsimony-based 
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methods can be consistent on their own (Siddall and Kluge 
1997; Steel and Penny 2000) or with a correction factor 
(Steel et al. 1993). Overall then, statistical consistency is 
a not a property of a method, but the property of a specifi c 
data set, the model, and specifi c situations (Siddall and 
Kluge 1997; Steel and Penny 2000).

A persistent philosophical objection to likelihood 
methods derives from the fact that all forms of the method 
use frequency probability theory (Kluge, 1990, 1997; 
Siddall and Kluge, 1997). The arguments goes as follows: 
(1) the aim of phylogenetic systematics is to discover the 
unique evolutionary history of a group of organisms, to 
elucidate its past; (2) frequency probability is primarily 
concerned with prediction of future events (e.g., Fisher 
1922); (3) likelihood methods apply frequency probability 
to a historical singularity, which is outside of the realm 
of future-predictive probability theory. All possible 
trees are assigned a non-zero probability, but in reality 
one tree has a probability of 1.0, and all others have 
a probability of zero. Proponents of this position are 
faced with a conundrum, namely that the D measure 
also utilizes frequency probabilities and yet leads to 
Hennigian/maximum parsimony methods. Luckily, 
this conundrum can be resolved fairly easily, because it 
is not a new argument. In a similar vein, Franz Boas, a 
founder of cultural Anthropology and an early champion 
of phylogenetic comparative studies, suggested that 19th 
century science had produced 

“a grand picture of nature in which for the 
fi rst time the universe appears as a unit 
of ever-changing form and color, each 
momentary aspect being determined by the 
past  moment...” Franz Boas, [History of 
Anthropology pp. 515, 524; Mind of Primitive 
Man, 1911, 1938 – 2nd ed, p. 11].
Discussing the early history of statistical 
mechanics, Brush (1983: 65) noted the fact 
that a macrostate can be assigned a certain 
“probability” does not  necessarily mean that 
its existence results from a random process. 
On the contrary, the use of probabilities here 
is perfectly compatible with the assumption  
that each macrostate is rigorously determined 
by its previous state and the forces acting on it. 
We need to use probability measures because 
we must deal with macrostates corresponding 
to large numbers of microstates. Boltzmann 
might have avoided the connotations of the 
word probability by using a neutral term such 
as “weighting factor.” 
If we consider each possible tree a macrostate (one 

possible outcome of a complex historical process called 

phylogenetic diversifi cation) and all traits used in an 
analysis (e.g. all base pairs) the microstates (Brooks 
and Wiley, 1988), the use of frequency probabilities for 
phylogenetic analysis is justifi ed on these grounds. The 
term “weighting factor’, however, is not neutral among 
systematists, even though all three classes of quantitative 
methods utilize different types of weighting factors 
(considering maximum parsimony as using a weighting 
factor of 1.0 for each trait). Finally, the use of “frequency” 
has been co-opted for comparative analysis of gene 
frequency data (Swofford and Berlocher, 1987), so we 
are left with using “probability” as the “least non-neutral 
available” term. 

A New Strategy
We believe that neither Popper’s philosophy nor 

appeals to statistical consistency can give precedence for 
one method of quantitative phylogenetic analysis over 
any others. Is there an objective way to reconcile these 
subjectively divergent approaches? An appeal to collegial 
pluralism (e.g., Faith and Trueman 2001) seems like a 
good idea at fi rst glance. It is becoming common practice 
for an author to present maximum parsimony, maximum 
likelihood and Bayesian analyses of the same data, then 
either arbitrarily expressing a preference for one of them, 
or presenting a consensus tree of the outcomes of each 
analysis, and using that as “the phylogeny”. We support 
the sentiment behind this proposal, but do not believe 
it is the best approach. In the fi rst case, the arbitrarily 
chosen result inevitably is the one that best supports the 
evolutionary scenario advocated by the author, which 
actually weakens the author’s case over a situation in 
which that result emerged uniquely from the data. In the 
second case, a consensus tree effectively hides precisely 
the parts of analyses that are in need of additional scrutiny, 
giving author and audience a false sense of security about 
the results (Miyamoto 1985).

We believe that individual data analyses presented 
without reference to an explicit evolutionary model or 
hypothesis (i.e., epistemological parsimony) are not 
explanations. They are descriptions, admittedly highly 
sophisticated descriptions, but just that. Using the principle 
of parsimony as an epistemological tool ensures that we 
have the most robust empirical result; adopting the most 
parsimonious summary of the data with respect to outgroup 
comparisons ensures that the most robust result can be 
interpreted phylogenetically. However, because such 
analyses are based on a weak homology criterion, strong 
interpretations of phylogenetic trees and their evolutionary 
signifi cance typically require more information than 
a branching diagram (Brooks and McLennan 2002). 
Likewise, fi tting data to a model provides explanations, 
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but only if the model is known or assumed to be true. That 
is, there is no means by which model-based methods can 
test the veracity of any given model or its assumptions; as 
we have shown above, they choose a model for a given set 
of data based only on an ad hoc preference for ontological 
simplicity.

Independent description and assessment relative to 
explanatory models both appear to be necessary but not 
suffi cient for robust explanations. Or,

If models do not agree with the empirical data, 
chances are the models, not the data, should 
be re-evaluated. This is not an antimodel 
stance. A mutually reinforcing and mutually 
modifying dialogue between models and 
empirical discovery enhances progress. 
(Brooks and McLennan 2002: x). 
Kluge (1989, 1991, 1997, 1998a, 1998b, 1999) has 

argued that historical sciences progress through cycles of 
discovery and evaluation, both being necessary but neither 
being suffi cient for robust explanations. We believe that 
Hennigian (epistemological parsimony) analysis is the 
best discovery method we have in phylogenetics. This is 
because its results are dependent on a minimum of a priori 
assumptions and thus the range of potential discoveries 
indicated by the data is greater than for any ontological 
parsimony approach. At the same time, we believe 
that this feature of Hennigian phylogenetics renders 
it relatively weak as an instrument of evaluation. In a 
complementary manner, it appears to us that the various 
maximum likelihood and Bayesian likelihood approaches 
are admirably suited as evaluation methods. We would 
like to see epistemological and ontological parsimony 
methods used together in a form of reciprocal illumination, 
not in the narrow sense of deriving a tree from multiple 
characters, but in a broader sense of cycles of discovery 
and evaluation.

To illustrate this point, we offer the following thought 
experiment: Suppose a Hennigian analysis, a maximum-
likelihood analysis, and a Bayesian likelihood analysis 
produce the same results. We should all celebrate, because 
we would have a relatively independent discovery (the 
Hennigian tree) supporting an evolutionary model (the 
likelihood tree). In this case, no one should have any 
concerns about using the likelihood model to infer 
divergence rates on the Hennigian tree.  Now, what does it 
mean if these different analyses do not produce the same 
results? In such cases it is likely that the data on hand 
do not contain very strong phylogenetic signal. This is 
evidenced by low support for the nodes that differ between 
the analyses and/or very short branches at these nodes. 
Hillis et al. (1992, 1993; Huelsenbeck and Hillis 1993) 
studied this problem when they produced a phylogeny 

for bacteriophages maintained in the laboratory. They 
discovered that most quantitative methods converged on 
the same, and true (since it was known) phylogeny as more 
and more traits were sampled. These results would seem 
to suggest that the primary response to any situation in 
which the different approaches to phylogenetics produce 
different answers should be 

When in doubt, get more data. (Brooks and 
McLennan 2002: 148)  
Maximum parsimony analysis is virtually isomorphic 

with Hennigian phylogenetics whenever outgroup 
comparisons are used to root a minimum-length network 
according to Hennig’s Auxiliary Principle. Maximum 
likelihood and Bayesian likelihood should also converge 
on Hennigian phylogenetics as more data are sampled 
and the preferred (most parsimonious possible) model 
becomes more complex, especially if some form of 
outgroup comparison is used in rooting the tree. The 
entropy maximum principle in Bayesian information 
theory shows clearly that the most complex model permits 
all possibilities a priori, while the Auxiliary Principle 
prohibits nothing a priori, clearly two ways of saying the 
same thing.

If this is true, then we can assess our progress by 
asking just how much disagreement there is in published 
phylogenetic trees based on the same data but derived 
using the different methods. A survey of volumes 51-53 
of Systematic Biology revealed 20 studies that reported the 
results of both Hennigian and model-based (Bayesian and/
or maximum likelihood) analyses of the same dataset(s). 
The phylogenetic hypotheses reported in these studies were 
based on datasets consisting of one to 11 gene sequences 
(3 gene sequences on average). Trees constructed using 
Bayesian and maximum likelihood were generally 
identical, which is not surprising as the underlying model 
chosen was identical for both methods. Trees constructed 
by model-based and Hennigian methods were identical 
in only 5 out of 28 cases (several studies reported results 
for each gene region separately as well as combined); 
nonetheless, they agreed far more than they disagreed.  
On average, the phylogenetic hypotheses tended to have 
88% identical nodes. Although there was no correlation 
between the number of gene sequences and percent 
identical nodes (Spearman rank correlation, r= 0.105, P= 
0.594), variation in percentage similarity between trees 
derived with the different methods was greatest in those 
studies using only one gene sequence, and this variation 
decreased with the number of gene sequences used. All 
three studies using 6 gene sequences showed identical 
trees regardless of method used for analysis. One study 
using 11 gene sequences did not produce identical trees 
with the different methods. However, the differences were 
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weakly supported and branches leading to these nodes were 
almost nonexistent, suggesting the clades had diverged 
very quickly and possibly no amount of data would ever 
resolve the ambiguity in a satisfactory manner.

Despite the small number of genes used on average 
per study, the survey suggests that (1) there is far more 
agreement than disagreement among the results using the 
different methods (which we expect given that all maximize 
some form of parsimony), and that (2) more data leads to 
congruent results from all methods, especially when the 
data are analyzed in a combined analysis framework. It 
seems clear that one should always attempt to gather as 
much data as possible and use differences in topology 
from different methods of analysis as a focus for collecting 
more data. Increasing the number of genes sequenced 
will become easier as time passes, but currently a good 
source of “extra” phylogenetic information appears to be 
morphology (Baker and Gatesy 2002; Wahlberg and Nylin 
2003; Wahlberg et al. 2005). In fact, one could well argue 
that because morphological traits are generally the result 
of multi-gene interactions, morphology can be excellent 
“evolutionary control” data when there are concerns about 
biased gene sampling as discussed e.g., by Rokas et al. 
(2003; see also Mattern and McLennan, 2004) It also 
appears clear that a “total evidence” approach gives the 
most robust answer, whether each character is allowed 
to evolve independently (Hennigian approach), different 
partitions are allowed to evolve according to different 
models (Bayesian likelihood approaches) or all partitions 
are forced to evolve according to the same model (current 
implementations of Maximum Likelihood).

What do we do while we are waiting for enough data to 
give the same answer with all methods? Hillis et al. (1992, 
1993; Huelsenbeck and Hillis 1993) showed that when data 
are limited, some models generate the correct phylogeny 
better than Hennigian approaches. Although some interpret 
this fi nding as an indication that model-based methods are 
inherently superior to Hennigian methods, Hillis et al. 
(1994) pointed out a signifi cant trade-off.  Model-based 
approaches provide a distinct answer based on little data, 
but the confi dence you have in that answer is proportional 
to your belief that the model used accurately refl ects the 
evolutionary process over extended periods of time for the 
clade being analyzed.

The issue becomes (again), how do we know the model 
typically gives the truth? Hillis et al. (1992) took a critical 
fi rst step by generating an experimental phylogeny. The next 
step is to ask how typical of evolution is that phylogeny? 
Remember that the phylogeny involved bacteriophages 
and was generated in the laboratory according to 
rules invoked by the researchers (reminiscent of the 
Caminalcules) to develop one of the fi rst epistemological 

parsimony algorithms. Some have suggested that 
prokaryote evolution has produced not a phylogenetic tree 
but a highly reticulated network (Doolittle 2000), in which 
case the experimental phylogeny produced by Hillis et 
al. (1992) is not typical of evolutionary history for their 
model organisms. Nonetheless, their results may still be 
typical of phylogenesis for many groups of eukaryotes. 

More important is the question, how large a role has 
the historical contingency that is such a critical part of 
Darwinian mechanisms played in phylogenesis? Some 
believe that such contingencies do not affect phylogenetic 
reconstructions while others believe the opposite (see 
Yang and Bielawski 2000 for a review). Seen in this light, 
is it possible that the reason Hennigian and model-based 
approaches converge with increasing data is that the 
more data we consider, the more historical contingencies 
will play a role, in which case model-based approaches 
will progressively choose models whose set of “allowed 
possibilities” most closely approximates the minimal “a 
priori restrictions” of Hennigian phylogenetics, such as 
the modifi ed GTR proposed by Lockhart et al. (1994). 
For example, Gissi et al. (2000) reported lineage-specifi c 
evolutionary rates for different mammalian mtDNA 
genes, suggesting that fi nding the correct phylogeny might 
require a different model for each gene. They suggested 
their fi ndings supported contentions by other molecular 
systematists that, given uncertainty about the true 
phylogeny, we cannot know which model will give the 
correct phylogeny, and thus we use analyses of as many 
genes as possible to help determine the appropriate model 
(see also Mitchell et al. 2000; Kolaczkowski and Thornton 
2004). 

Conclusions – A Stable Platform for the Future
To summarize:

•   Using the principle of parsimony as an epistemological 
tool ensures that we have the most robust empirical result 
given the data; adopting the most parsimonious summary of 
the data with respect to outgroup comparisons ensures that 
the most robust result can be interpreted phylogenetically. 

•   Likewise, fi tting data to a model provides explanations, 
but only if the model is known or assumed to be true. That 
is, there is no means by which model-based methods can 
test the veracity of any given model or its assumptions; 
researchers generally choose a model for a given set of 
data based only on an ad hoc preference for ontological 
simplicity (ontological parsimony).

• As more data are added to the study, however, likelihood 
methods, including Bayesian likelihood analysis, generally 
move more quickly to the most complex model. The 
entropy maximum principle in Bayesian information 
theory shows clearly that the most complex model permits 
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all possibilities a priori, while the Auxiliary Principle 
prohibits nothing a priori, clearly two ways of saying the 
same thing. This may explain why Mr. Bayes behaves so 
much like “Mr. Hennig.”

•   The three classes of quantitative methods of phylogeny 
reconstruction begin to converge on the same answer as 
more data are added to the analysis. If all three methods 
produce identical results, there is no way, or even reason, 
to choose between them. Confl icting results in part of the 
tree highlight peculiarities in the data set (e.g., long branch 
attraction, rapid diversifi cation etc). In this situation, choice 
of method depends upon the resistance of each method to 
the particular vagaries of the data.

• Hennigian (epistemological parsimony) analysis is 
the best discovery method we have in phylogenetics 
because its results are dependent on a minimum of a priori 
assumptions and thus the range of potential discoveries 
indicated by the data is greater than for any ontological 
parsimony approach. In a complementary manner, the 
various maximum likelihood and Bayesian likelihood 
approaches are admirably suited as evaluation methods, 
that is as methods allowing us to investigate the processes 
potentially underlying phylogenetic patterns. The most 
complete explanation for phylogeny is thus the one 
that incorporates information from both Hennigian and 
likelihood approaches.

While it is often true that disputes among scientists are 
the engines of innovation and development, they can also 
have the opposite effect. There is no doubt that quantitative 
phylogenetic analysis has revolutionized evolutionary 
studies and has had signifi cant impacts in many areas of 
biology, both basic and applied (for a panoramic overview, 
see Brooks and McLennan 2002). Much of the academic 
infi ghting associated with the development and deployment 
of different methods for phylogenetic analysis, however, 
has obscured the real progress that has been made in 
reconstructing the phylogenetic history of life. This, in 
turn, has undermined efforts by systematists to gain proper 
credit for their role in making possible the explosion of 
comparative evolutionary biology during the past 30 years 
and, more recently in dealing with the global biodiversity 
crisis. We hope that, by highlighting the substantial 
complementarities among these methods, as well as the 
shortcomings of each, we can lay the groundwork for 
making the competitive arena of development more 
collegial than it has been in the past. 
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