Taxonomy and systematics

Mites of the families Pygmeophoridae and Neopygmeophoridae (Acari: Pygmephoroidea) from soils in Mexico

Ácaros de las familias Pygmeophoridae y Neopygmeophoridae (Acari: Pygmephoroidea) de suelos en México

Ignacio M. Vázquez-Rojas a, *, Edith G. Estrada-Venegas b, Mercedes G. López-Campos a

a Laboratorio de Acarología, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Colonia Copilco, 04510 México, D.F., Mexico
b Entomología y Acarología, Colegio de Postgraduados, Carretera México-Texcoco, Km. 36.5 Montecillo, 56230 Texcoco, Estado de México, Mexico

Received 29 September 2014; accepted 11 March 2015
Available online 30 July 2015

Abstract

Mites of the families Pygmeophoridae and Neopygmeophoridae have been poorly studied in Mexico. Previous records from this group are: Acinogaster (A.) kansensis from Chiapas, A. (A.) mariana from Veracruz, Pygmeophorus americanus from Mexico, some species of Sietenotes from Puebla and Pediculaster thailandensis from Quintana Roo. In this study we provide additional data, including specimens of Neopygmeophoridae such as Kerdabania inconspicua, Bakerdania exigua, Pseudopygmephorus agarici, and P. shangaiensis; and of Pygmeophoridae: Mahunkania secunda, Pediculaster ignotus and P. gracilis. Abundant specimens of Pediculaster ignotus were present in garlic crop soil.

All Rights Reserved © 2015 Universidad Nacional Autónoma de México, Instituto de Biología. This is an open access item distributed under the Creative Commons CC License BY-NC-ND 4.0.

Keywords: Prostigmata; Garlic crop; Organic soil; Phoretic mites

Resumen

Los ácaros de las familias Pygmeophoridae y Neopygmeophoridae de México han sido poco estudiados. Registros previos de este grupo son: Acinogaster (A.) kansensis de Chiapas, A. (A.) mariana de Veracruz, Pygmeophorus americanus de México y especies de Sietenotes en muestras de Puebla, así como Pediculaster thailandensis del estado de Quintana Roo. En este estudio damos a conocer nuevos datos que incluyen a ejemplares de Neopygmeophoridae como Kerdabania inconspicua, Bakerdania exigua, Pseudopygmephorus agarici y P. shangaiensis; también de la familia Pygmeophoridae a Mahunkania secunda, Pediculaster ignotus y P. gracilis. La mayor abundancia de Pediculaster ignotus estuvo presente en suelos cultivados con ajo.

Derechos Reservados © 2015 Universidad Nacional Autónoma de México, Instituto de Biología. Este es un artículo de acceso abierto distribuido bajo los términos de la Licencia Creative Commons CC BY-NC-ND 4.0.

Palabras clave: Prostigmata; Cultivo de ajo; Suelo orgánico; Ácaros foréticos

Introduction

The family Pygmeophoridae contains 30 genera and 350 species (Krantz & Walter, 2009). These figures have changed since the work by Kethley (1982), mainly due to recent reviews of this heterogeneous group. One of these changes is the re-establishment of the family Neopygmeophoridae and the revision of generic characters to define them (Camerick, 2005; Khaustov, 2004). The most diverse genera of the families Pygmeophoridae and Neopygmeophoridae are Bakerdania Sasa, 1962 (about 100 species), Pygmeophorus Kramer, 1877 (about 43 species) and Pediculaster Vitzthum, 1931 (about 95 species) (Camerick, 2010; Khaustov, 2004, 2008).
Pygmehorid mites from Mexico cited by Hoffmann and López-Campos (2000) are Acinogaster (Acinogaster) kansensis Ross & Cross, 1979 (USA, Mexico, Costa Rica, Panama, Ecuador, and Brazil) from Chiapas State; A. (A.) mariana Cross, 1965 (Mexico, Costa Rica, Panama, Ecuador, Guyana, and Trinidad) from Veracruz State; Pediculaster americanus (Banks, 1904) (USA, Mexico, and Haiti) from Mexico without more data. Species of Siteroptes Amerling, 1861 in soil samples from Puebla are also cited without any other data (Hoffmann & López-Campos, 2000). Pediculaster thailandensis Camerick, 2005 on Chloropidae flies, from Playa del Carmen, Quintana Roo and from a rocky seashore on Tethinidae flies, from Tulum, Quintana Roo, Mexico, are the most recent records (Camerick, 2005).

We have been studying Prostigmata mites found in cultivated soils since 2005. Some results have already been published, particularly those about Ereynetidae from cultivated soils with a garlic (Allium sativum L.) crop in Guanajuato, Mexico (Vázquez-Rojas & Estrada-Venegas, 2010). Here, we publish data on the families of Pygmehoridae and Neopygmehoridae found in garlic crop soil as well as, other natural, cultivated soils and compost. We consider the genera Mahunkania and Pediculaster as members of the family Pygmehoridae and the genera Bakerdania, Kerdabania and Pseudopygmehorus as members of the family Neopygmehoridae, following Khaustov (2004, 2009).

Materials and methods

All samples were collected by E. Estrada and A. Equihua from different parcels at the states of Guanajuato, Mexico, Veracruz and D. F. One kilogram of soil was processed by a Berlese Funnel by E. Estrada and her team along 1 year. The following arrangement of locality data was used: Guanajuato municipalities (in italics), parcel names and 2 letters as key of that name. Salamanca: El Fuerte (EF), El Tajo (ET), La Cuadrilla (LC), Pozo Félix (PF), San Isidro (SI) and San Juan (SJ); Comonfort: La Huerta (LH); Los Rodríguez: Mina 5 (MS); San Luis de La Paz: El Zorrillo (EZ) and El Nacimiento (EN). Same arrangement was used for other states and habitats. Compost samples at Texcoco (Montecillo), Mexico State (MTx); soil samples from Rio Tuxtla, Veracruz state (RTV); and soil samples from crops such as corn (Zea mays L. 1753), pumpkin (Cucurbita pepo L. 1753), coriander (Coriandrum sativum L. 1753), and goosefoot (Chenopodium nuttalliae); from parcels P.J. Capultitla in Xochimilco, Distrito Federal (PJCX). A total of 167 specimens of Pygmehoridae and Neopygmehoridae were mounted on slides and studied; these will be deposited in the collection of the second author.

Drawings were made with a Zeiss compound microscope equipped with a camera lucida and then processed with Photoshop CS5. All measurements are expressed in μm and were made following the procedure by Camerick, 1996.

Description

Neopygmehoridae Cross, 1965
Pseudopygmehorus Cross, 1965
Type species: Pygmehorus tarsalis Hirst, 1921; Cross, 1965: 221
Pseudopygmehorus agarici Zou, Gao & Ma, 1990: 373 (Figs. 1–6)

Distribution and habitats of the species described by Zou, Jian-Rong, and En-Pei (1990)

Holotype and allotype of P. agarici were found in mushroom compost as well as manure in Shangai, China. Paratypes were found in mushroom compost, compost being pasteurized and on straw in greenhouses (Zou et al., 1990).

Pseudopygmehorus agarici

Other species of P. aphodii Khaustov, 2010 (Ukraine), have been found on dung beetles Aphodius fimetarius (L.), and P. smileyi Hill & Deahl, 1978 (USA), on horse manure for commercial mushroom production (Hill & Deahl, 1978; Khaustov, 2010).

Pseudopygmehorus shangaiensis Zou, Gao, & Ma, 1990: 375 (Figs. 7–12)

Phoretomorph females collected in compost. 8, MTx, 19/07/2005.

Distribution and habitat of the species described by Zou et al. (1990)

Holotype, allotype and paratypes were found on manure and mushroom compost in Shangai, China (Zou et al., 1990).

Pseudopygmehorus shangaiensis

Figures 1–6. *Pseudopygmehorus agarici*. (1) Dorsal view; (2) ventral view; (3–6) legs I to IV. Scale bar 50 μm.

Figures 7–12. *Pseudopygmehorus shangaiensis*. (7) Dorsal view; (8) ventral view; (9–12) legs I to IV. Scale bar 50 μm.

Kerdabania Khaustov, 2009
Type species: Kerdabania magnifica, Khaustov, 2009; 171
Kerdabania inconspicua (Berlese, 1904) (Figs. 13–18)
Pigmephorus inconspicuus Berlese, 1904; 12
Scutacarus centricrur Cooreman, 1951
Pygmyphorus sellnicki Krezel, 1958: 69
Kerdabania inconspicua (Berlese, 1904) Khaustov, 2009: 183 comb. n.

Distribution and habitat of the species renamed by Khaustov (2009)
The genus has worldwide distribution, except Antarctica. Forest litter and nests of small mammals and ants are known habitats. Phoresy is unknown. *K. inconspicua* from Ukraine, vicinity of Poltava, soil under straw (Khaustov, 2009).

Kerdabania inconspicua

Bakerdania Sasa, 1961
Type species: Pygmyphorus cultratus Berlese, 1904; (1970)
Bakerdania exigua (Mahunka, 1969) (Figs. 19–24)
Bakerdania exiguis Mahunka, 1969; Mahunka, 1970: 348

Females in garlic crop soil in Guanajuato State. 2, EN, 16/01/2002; 1, PF, 13/02/2002; 1, 17/01/2001; 1, 14/03/2002; 1, SI, 15/03/2002; 1, EJ, 18/02/2002.

Distribution and habitat of species by Mahunka (1970)
Probably cosmopolitan, known from Europe and South America (Mahunka, 1970).

Bakerdania exigua

Pygmyphoridae Cross, 1965
Pedicularaster Virzhum, 1931
Type species: Pygmyphorus meambrinae Canestrini, 1880
Pedicularaster ignotus Krezel, 1959 (Figs. 25–30)

Phoretomorph females in soil of garlic crop in Guanajuato State. 6, PF, 15/03/2002; 36, PF, 15/05/2002; 1, EZ, 29/07/2002; 1, EN, 13/11/2001.

Distribution and habitat of species by Rack (1965) and Camerick and Coetzee (1997)
The genus *Pedicularaster* is cosmopolitan, with some species inhabit dung and fungi. Common habitat is cattle dung and compost; the mites are phoretic on Diptera (Camerick & Coetzee, 1997). This genus is also known to inhabit soil, litter, mosses, and mammal droppings, mammal nests, plants and fruits (Camerick, 1996). *Pedicularaster ignotus* was recorded from Hamburg-Langenhorn North, in organic material of 2–3 years of age (Rack, 1965).

Pedicularaster gracilis Camerick & Ueckermann, 1995
(Figs. 31–36)

Phoretomorph females in soil of garlic crop in Guanajuato State. 2, EN, 13/12/2001; 1, EN, 13/09/2001; 2, EZ, 29/06/2002.

Distribution and habitat of species described by Camerick and Ueckermann (1995)
Type locality. Republic of South Africa, Johannesburg, Sandton, Innes Free Farm; habitat: horse and cow dung. Specimens also on Cynipidae (Hymenoptera) indeterminate (Camerick & Ueckermann, 1995).

Pedicularaster gracilis
Ventral side: Apodeme 3 not interrupted between setae 3a.

Mahunkania Rack, 1972
Type species: Mahunkania hallensis Rack, 1972: 278
Mahunkania secunda Rack, 1975 (Figs. 37–42)

Phoretomorph females in soil of garlic crop in Guanajuato State. 3, PF, 15/05/2002.
Figures 13–18. *Kerdabania inconspicua*. (13) Dorsal view; (14) ventral view; (15–18) legs I to IV. Scale bar 50 μm.

Figures 19–24. *Bakerdania exigua*. (19) Dorsal view; (20) ventral view; (21–24) legs I to IV. Scale bar 50 μm.

Distribution and habitat of species described by Rack (1972)

Mahunkania secunda was collected in Florida, USA from *Fragaria* sp. (Rack, 1972).

Mahunkania secunda

Studied specimens share with *M. secunda* the following characters after Kurosa (2002). Stig mata elongate-rectangular; prodorsal setae *v1* subequal in length to *v2*; setae *e* about *½* as long as *f*; coxal setae *1lb* directly posterior to *1a*, not reaching apodeme 2 when directed backward; coxal *1c* neither longer nor thicker than *1a* and *1b*; solenidia *ω1* just apical in position, well apart from, and somewhat larger than *ω2*; seta *d* on femur IV reaching apex of tibia; setae *d* (3.35) and *l'* (3.78) on femur I subequal in size.

Discussion

The biology and behavior of Pygmeophorid mites have been poorly studied, and they usually have been found associated phoretically to insects but the soil relationships are not fully understood. These mites have been collected in soils with high levels of organic matter, feeding on fungi (Kurosa, 1999), in different ecosystems as soil crust in desert habitat (Villarreal-Rosas, Palacios-Vargas, & Maya, 2014), termite nests (Wang, Powell, & O’Connor, 2002) and Arctic deserts (Khaustov & Makarova, 2005). Xochimilco soils are constantly improved with organic matter from the base of the lake, where the Chinampas zone is established. Garlic crop is usually associated with pathogenic fungi in the Guanajuato fields, so these conditions favor the Pygmeophorid species. These mites are also vectors of fungal pathogens of plants and may feed preferentially on these phytopathogen fungi (Krantz & Lindquist, 1979).

The genus *Bakerdania* is one of the largest genera in the Neopygmeophoridae family, and includes about 100 species (Khaustov, 2008). They are found in all continents except Antarctica. These mites are piercing-sucking fungi with different feeding habits (Walter & Proctor, 2013). They inhabit litter and eutrophic habitats, where they arrive by means of phoresy on insects (Kurosa, 1999).

The genus *Pediculaster* was abundant in samples, especially in garlic crop soil, with less abundant genera such as *Bakerdania* and *Mahunkania*, yet the latter remain very rare. Specimens of *Pediculaster* appear to be common in garlic crop soil, especially *P. ignotus*. With regard to this species, the difference in size of *ps2* is noteworthy with respect to other *Pediculaster* species; nevertheless, this seta is similar to *ps2* of *P. ignotus* shown by Rack (1965). In the drawing 14 (page 26) of Rack’s paper the *ps2* is the shorter seta and the *ps3* is the largest, as was found in the specimens of this study. All specimens of *P. ignotus* are phoretic females; we believe that their insect hosts may be the visitors in or near the garlic crop. It is clearly necessary to collect insects related to the crop searching for mites to confirm this relationship (Camerick, 1996).

Pediculaster thailandensis was only found in compost. We assume that this species may be associated with some dipteran that dwells compost. As previously, the female phoretomorph leads us to believe that the presence of these mites is linked to the presence of host insects in the crop (Camerick, 2005).

All the records presented here are new for Mexico and for the substrata where they were collected.
References

